This information Memorandum, title or other supplementary property information (the "Information") has been prepared by Whalan and Partners Limited, trading as Bayleys ("Bayleys") as agent for "the Vendor". The Information contains information that is publicly available and/or sourced from third parties and capable of independent verification. It has been prepared solely to assist interested parties in deciding whether to further their interest in the Property and Whalan and Partners Limited is acting as a conduit and merely passing this information over. Prospective purchasers must not confine themselves to the contents of the Information but should, in conjunction with their professional advisors, make their own evaluation of the Property and conduct their own investigation, analysis and verification of the data contained in the Information and otherwise concerning the Property. Such evaluation should extend to and include whether there has been a change in the affairs or prospects of the Property since the date of the Information or since the date as at which any information contained in the Information is expressed to be applicable.

Bayleys and the Vendor have not verified any of the detail contained in the Information and Bayleys and the Vendor make no representation or warranty as to the accuracy or completeness of the information and neither Bayleys nor the Vendor accept and/or shall have any liability whatsoever for the accuracy of any part of the information including any liability for any statements, opinions, information or matters (expressed or implied) arising out of, contained in or derived from the Information, or any omissions from, or failure to correct any information, or any other written or oral communications transmitted to any recipient of the Information in relation to the Property.

# Rosemerryn Subdivision, Lincoln 

Stages 19 to 24 Geotechnical Investigation Report

Fulton Hogan Land Development Limited

Reference: 224464
Revision: 0
2018-06-22

The poments of this documentation ate
etrictly stbject to the torms and conditions
of the dinceimer contained at the front of
this documentalion. Prospective purchasers
must accordingiy tead and accuaint
thernedves with the disclaimer prior to
reading the documemtation

## áurecon

Sringing ideas
to
life

## Document control record

Document prepared by:
Aurecon New Zealand Limited
Level 2, Iwikau Building
93 Cambridge Terrace
Christchurch 8013
New Zealand

T +64 33660821
F +6433796955
E christchurch@aurecongroup.com
W aurecongroup.com
A person using Aurecon documents or data accepts the risk of:
a) Using the documents or data in electronic form without requesting and checking them for accuracy against the original hard copy version.
b) Using the documents or data for any purpose not agreed to in writing by Aurecon.


## Approval

| Author signature | Approver signature |  |
| :--- | :--- | :--- |
| Name | Name |  |
| Title | Senior Engineering <br> Geologist | Title |

## Contents

1 Executive Summary ..... 5
2 Introduction .....  7
3 Site Conditions .....  8
3.1 Site Description .....  8
3.2 Regional Geology ..... 8
3.3 Seismicity ..... 8
3.4 Recorded Earthquake Damage ..... 9
3.5 MBIE Land Classification ..... 9
4 Geotechnical Investigations ..... 10
4.1 General ..... 10
4.2 Environment Canterbury Well Logs ..... 10
4.3 Previous Geotechnical Investigations ..... 11
4.4 Recent (2018) Investigations ..... 11
4.4.1 Cone Penetration Testing ..... 11
4.4.2 Boreholes and Piezometers ..... 11
4.4.3 MASW Soundings ..... 12
5 Engineering Considerations ..... 13
5.1 General ..... 13
5.2 Geotechnical Ground Model ..... 13
5.2.1 Ground Conditions ..... 13
5.2.2 Groundwater ..... 14
5.3 Site Flexibility ..... 15
5.4 Liquefaction Assessment ..... 16
5.4.1 General ..... 16
5.4.2 Liquefaction Potential Assessment ..... 18
5.4.3 Summary of MBIE Technical Category Liquefaction Assessment ..... 25
5.5 Liquefaction Mitigation ..... 26
5.5.1 General ..... 26
5.5.2 Technical Category 1 ..... 26
5.5.3 Technical Category 2 ..... 26
5.6 Bearing Capacity ..... 27
6 Assessment Against the RMA ..... 29
7 References ..... 30
8 Limitations ..... 32
Appendices

Figures
DLS Plans
ECan Logs
Previous Investigations
2018 CPT Logs
2018 Borehole Logs
2018 MASW Report
Liquefaction Results
RMA Assessment

## Tables

Table 1: Summary of ECan borehole logs
Table 2: Summary of relevant previous investigations
Table 3: Piezometer installation summary
Table 4: Inferred Ground Profile 1 (Northern section of site)
Table 5: Inferred Ground Profile 2 (Middle section of site)
Table 6: Inferred Ground Profile 3 (Southern section of site)
Table 7: Groundwater levels and relative levels
Table 8: Earthquake design level events for liquefaction analysis
Table 9: Summary of SPT based liquefaction analysis for sand lenses
Table 10: Summary of $V_{s}$ based liquefaction analysis for sand lenses
Table 11: Liquefaction Assessment Methodology Summary
Table 12: LSN descriptions
Table 13: Summary of liquefaction analysis for the 4 September 2010 Darfield Earthquake
Table 14: Summary of liquefaction analysis for the design level events
Table 15: Liquefaction deformation limits and house foundation implications

## 1 Executive Summary

## Introduction

Fulton Hogan Land Development Limited is proposing to subdivide approximately 23 ha area of rural land in Lincoln, for Stages 19 to 24 of the Rosemerryn residential subdivision. The site is located on the eastern side of the wider Rosemerryn Subdivision that is currently being developed and will comprise approximately 240 residential lots with reserves and roading.

Fulton Hogan Land Development Limited (FHLD) has engaged Aurecon New Zealand Ltd (Aurecon) to undertake a geotechnical investigation and assessment for Stages 19 to 24 of the Rosemerryn Subdivision, which is continuation of our work on the wider site since 2005. The purpose of the investigation is to assess the suitability of the land for residential development to characterise the risk of liquefaction and lateral spreading to the development and to provide a report to support the resource consent application.

## Geotechnical Investigations

The geotechnical investigations comprised a review of Environment Canterbury (ECan) well logs and previous geotechnical investigations undertaken across the site since 2011, Cone Penetration Tests (CPTs), piezometer installations and Multi-channel Analysis of Surface Waves (MASW) soundings.

Based on the results of our geotechnical investigations, the ground conditions across the site can separated into three different ground profiles based on the depth to the underlying gravel. To the north, gravel is at relatively shallow depths of 2 m or less, with the depth to gravel deepening towards the south. At the southern corner of the site the gravels are approximately 7 m below ground level. The gravel is overlain by interbedded loose to medium dense Sands and Silty Sands, and firm to stiff Sandy Silts and Silts.

Piezometer readings indicate groundwater levels in the order of 1.4 m to 1.5 m depth, with the exception of BH 203 adjacent to the stream, which indicated water at 1 m depth. It is noted that groundwater levels will vary seasonally or following prolonged rainfall.

## Liquefaction Assessment

A liquefaction assessment has been carried out at the site and the results indicate the following:

- Based on the O'Rourke et. al. (2012) PGA model the site has been "sufficiently tested" (MBIE Guidelines (2012)) as the median value for the PGA for the 4 September 2010 event exceeded $170 \%$ of the SLS PGA (i.e. $1.7 \times 0.13 \mathrm{~g}=0.22 \mathrm{~g}$ ). Therefore, we have used the lack of ground damage observed at the site after the 4 September 2010 earthquake event to help calibrate our liquefaction assessment.
- The GNS Science report on liquefaction (GNS, 2012), a review of aerial photography, and site observations made by Aurecon and Fulton Hogan staff confirms that there was no evidence of liquefaction observed at the site after the 4 September 2010 Darfield earthquake, or any subsequent earthquakes part of the Canterbury Earthquake Sequence.
- In the northern part of the site, liquefaction induced settlements and damage are likely to be minimal and consistent with a TC1 classification while elsewhere the calculated liquefaction induced settlements and assessed ground damage are consistent with TC2 and TC3 classifications. However, when compared to actual site performance, the level of calculated damage is well overstated, as the back analysis indicates that moderate to major ground damage should have occurred when only limited to minor damage was observed at and around the site.
- The liquefaction induced lateral spreading potential is considered to be minor.
- Based on our liquefaction assessment, and the limited evidence of ground damage, we infer that only minor to moderate land damage from liquefaction is possible in future large earthquakes at parts of the site.


## Technical Category Classification

Based on our liquefaction assessment we consider that the northern part of Stage 19 to 24 is consistent with the classifications of Technical Category 1 (TC1) and the remainder of the site is consistent with the classification of Technical Category 2 (TC2). Across Stages 19 to 24 future land damage from liquefaction is unlikely in the Technical Category 1 area, and possible in the Technical Category 2 area in future large earthquakes. The locations of the Technical Category zones are shown on see Figure 11 in Appendix A.

## Bearing Capacity

Based on the available investigation logs it is unlikely that shallow bearing for a typical house foundation of 300 kPa ultimate bearing capacity will be achieved. Therefore "good ground" as per New Zealand Standards Timber Framed Buildings (NZS3604:2011) and Concrete Masonry Buildings Not Requiring Specific Engineering Design (NZS4229:1999) will not be met at this site and specifically designed foundations will be required based on the building consent investigations.

Therefore, irrespective of any potential liquefaction risk at the site, typical light weight timber framed or masonry houses (which would generally be designed within the guidelines of NZS3604:2011 or NZS4229:1999) will require specific foundation investigation and design (which are outside the scope of this report). We believe, that TC2 enhanced slab foundations will be suitable for soils with bearing capacities of 200 kPa or more. Where lower bearing capacities are encountered shallow foundations can be specifically designed to ensure deformations are within acceptable limits. Based on our experience we believe that TC2type enhanced slab foundations or robust rib rafts will be suitable for the lower bearing capacity soils. These foundation types will also mitigate the impact from shallow liquefaction induced land damage.

Site specific testing (including hand augers and DCPs) will be required on all lots to confirm the actual ground conditions and to determine available bearing capacities.

## RMA Section 106 Assessment

A risk assessment approach has been undertaken on the significant geotechnical hazards that may affect the site (see Appendix I). Based on this assessment we consider that there are no significant geotechnical hazards at the site other than the potential for earthquake induced soil liquefaction. However, provided that the geotechnical recommendations provided within this report are followed, and the appropriate engineering measures are implemented, then we consider that the development is unlikely to be affected by significant geotechnical hazards nor will the development worsen, accelerate or result in material damage. Therefore, from a geotechnical perspective we consider that the residential subdivision development will comply with the requirements of RMA Clause 106.

The geotechnical investigations were aimed at assessing the site for geotechnical suitability for subdivision into residential lots with associated access roads and rights-of-way. Detailed design of house foundations is not part of this report and will need to be undertaken by the individual lot owner. This report shall be read as a whole and our limitations are provided in Section 8.

## 2 <br> Introduction

Fulton Hogan Land Development Limited is proposing to subdivide approximately 23ha area of rural land in Lincoln, for Stages 19 to 24 of the Rosemerryn residential subdivision. The site is located on the eastern side of the wider Rosemerryn Subdivision that is currently being developed and will comprise approximately 240 residential lots with reserves and roading.

Fulton Hogan Land Development Limited (FHLD) has engaged Aurecon New Zealand Ltd (Aurecon) to undertake a geotechnical investigation and assessment for Stages 19 to 24 of the Rosemerryn Subdivision, which is continuation of our work on the wider site since 2005. The purpose of the investigation is to assess the suitability of the land for residential development, and to characterise the risk of liquefaction and lateral spreading to the development. The scope of the works undertaken was as follows:

- A detailed desk study of readily available geological and geotechnical information available for this site.
- A site walkover by a Senior Engineering Geologist.
- Review the existing geotechnical work carried out in the area by Aurecon.
- Undertake further geotechnical investigations comprising of fifteen cone penetration tests, installation of five piezometers and MASW soundings.
- A liquefaction analysis using latest MBIE and NZGS Guidelines to identify the liquefaction potential of the underlying natural soils and to confirm the technical categories across the site based on the liquefaction assessment.
- Provide recommendations on potential liquefaction remediation options for the site.
- Provide recommendations for further testing (if required).
- Assess the site against Section 106 of the Resource Management Act (RMA).
- Prepare a geotechnical investigation report for Rosemerryn Subdivision Stages 19 to 24.

This geotechnical report presents the results of our geotechnical investigations and assessment, confirms the suitability of the land for residential development, as well providing recommendations for site development.

Our work has been carried out under the existing ACENZ/IPENZ Short Form Agreement between FHLD and Aurecon, as per Aurecon's fee proposals dated 24 April 2018. Approval to proceed was given by Greg Dewe on 25 April 2018.

Our limitations are provided in as Section 8 of this report and this report shall be read as a whole.

## 3 Site Conditions

### 3.1 Site Description

The site is located on the eastern side of the wider Rosemerryn subdivision (See Figures 1 and 2 in Appendix A and the Davie Lovell Smith drawing in Appendix B). The main site features are:

- The site has an approximate area of 23ha and has an irregular rectangular shape.
- The site topography is relatively flat with less than 1.5 m height change across the area.
- The site is bound to the north by rural land, to the west by previous stages of the Rosemerryn Subdivision, to the south by Edward Street and to the east by Ellesmere Road.
- There is a small stream which runs through the Rosemerryn subdivision and divides the northern section from the southern section. The stream is approximately 0.5 m deep and 2 m to 3 m wide with no significant bank.
- The site is currently being used for pastoral and crop farming and is covered in grass with localised shelter belts along the fence lines.
- Current drainage is inferred to be via direct soakage to the ground or via runoff to the small stream.


### 3.2 Regional Geology

The geology of the site is shown on the Geological and Nuclear Sciences Map 16, Geology of Christchurch area, scale 1:25,000 (compiled by Forsyth, Barrell and Jongens, 2008). The map indicates that the site is underlain by grey river alluvium beneath plains of low-level terraces (Q1a).

### 3.3 Seismicity

The GNS Science Active Fault System database (GNS, 2012a and 2012b) indicates that the site is within an area of recent seismic activity known as the Canterbury Earthquake Sequence (CES) and is approximately:

- 12 km south-east of the eastern extension of the Greendale Fault, which was responsible for the Magnitude Mw7.1 Darfield (Canterbury) Earthquake on 4 September 2010.
- 16 km south-west of the epicentre of the Magnitude $\mathrm{M}_{w} 6.2$ Christchurch Earthquake on 22 February 2011 (GNS, 2011b);
- 21 km south-west of the epicentre of the Magnitude M $_{w} 6.0$ major aftershock on 13 June 2011 (GNS, 2011b); and
- 23 km south-west of the epicentre of the Magnitude $\mathrm{M}_{\mathrm{w}} 5.9$ major aftershock on 23 December 2011 (GNS, 2011b).

Based on the O'Rourke et. al. (2012), as shown on the New Zealand Geotechnical Database, peak ground accelerations of approximately 0.33 g were experienced at the site during the 4 September 2010 Darfield Earthquake.

### 3.4 Recorded Earthquake Damage

Based on the GNS report "Review of liquefaction hazard information in eastern Canterbury, including Christchurch City and parts of Selwyn, Waimakariri and Hurunui' (GNS, 2012), there was no observed liquefaction induced ground damage after the 4 September 2010 or 22 February 2011 earthquakes. Minor surface expression of liquefaction was observed in areas 500 m southeast of the site. The locations of observed damage are shown in Figures 3 and 4 in Appendix A.

Based on reviews of aerial photography, discussions with Fulton Hogan staff who are familiar with the site, and Aurecon site walk overs in 2011, 2012, 2013, 2015 and 2018, no surface expression, of liquefaction or land cracking occurred within the proposed subdivision. The lack of observations of liquefaction induced ground damage is consistent with the GNS report.

### 3.5 MBIE Land Classification

The current land classification for the site, according to the Ministry of Business Innovation and Employment (MBIE) Technical Categories map, is "N/A - Rural \& Unmapped". To the east of the site on the eastern side of Ellesmere Road it is classified as "Technical Category 2" and to the west of the site it is classified as "Technical Category 1".
"N/A - Rural \& Unmapped" means that normal consenting procedures apply in these areas. "Technical Category $1 "$ means that future land damage from liquefaction is unlikely, and ground settlements are expected to be within normally accepted tolerances. Standard foundations (NZS 3604) are acceptable in TC 1 areas subject to shallow geotechnical investigation. "Technical Category 2" means that minor to moderate land damage from liquefaction is possible in future large earthquakes. Lightweight construction or enhanced foundations are likely to be required such as enhanced concrete raft foundations (i.e. stiffer floor slabs that tie the structure together).

## 4 Geotechnical Investigations

### 4.1 General

The objective of the geotechnical review and site investigation was to determine the ground and groundwater conditions across the site in order to assess the suitability of the site for subdividing into residential sections.

Geotechnical investigations have been carried out across the site at various stages since August 2011 with more recent investigations in Stages 19 to 24 carried out in May 2018. As part of our assessment for the site we have reviewed previous investigations on and around Stages 19 to 24 , as well as the results from the recent investigations.

The geotechnical review and investigation included the following information:

- Readily available Environment Canterbury well logs from Canterbury Maps.
- Previous geotechnical investigations, which comprised geotechnical boreholes, test pits, cone penetration tests (CPT) and Multi-channel Analysis of Surface Waves (MASW).
- Additional investigations which comprised
- Fifteen CPTs to target depths of 10 m or refusal.
- Four piezometers installed to depths ranging from 3 m to 5 m .
- One geotechnical borehole to 12 m with standard penetration tests (SPT) at 1.5 m centres and piezometer installation.
- $1,125 \mathrm{~m}$ of MASW lines.

Details of the geotechnical investigations is presented in the following sections.

### 4.2 Environment Canterbury Well Logs

A review of the Canterbury Maps and Environment Canterbury GIS Database (ECan, 2015) indicates five Environment Canterbury boreholes with logs on the site. The borehole logs, locations, and depths are summarised in Table 1 below.

Table 1: Summary of ECan borehole logs

| Borehole | Location | Depth | Groundwater Depth | Summary of Stratigraphy |
| :---: | :---: | :---: | :---: | :---: |
| M36/8674 | South western corner of the site | 6.0 m | 1.1 m | - 0 to 0.2 m - Topsoil <br> - 0.2 to 6.0 m - Silty Clay |
| M36/8675 | On the eastern side of the site | 5.8m | 1.5 m | - 0 to 0.2 m - Topsoil <br> - 0.2 to 3.6 m - Silty Clay <br> - 3.6 to 5.8 m - Silty Sandy Gravel |
| M36/8676 | On the west side of the site, north of the stream | 5.2 m | 1.6 m | - 0 to 0.2 m - Topsoil <br> - 0.2 to 3.6 m - Sandy Silt, Silt and Silty Clay <br> - 3.6 to 5.2 m - Gravel |
| M36/8679 | On the western side of the northern part of the site | 5.8 m | 1.1m | - 0 to 0.2 m - Topsoil <br> - 0.2 to 4.2 m - Sandy Silt and Silty Clay <br> - 4.2 to 5.8 m - Gravel |


| Borehole | Location | Depth | Groundwater <br> Depth | Summary of Stratigraphy |
| :--- | :--- | :--- | :---: | :---: |
| M36/8680 | North western <br> corner of the <br> site | 6.7 m | 1.4 m | - 0 to 0.2 m - Topsoil |

The locations of the ECan borehole logs are presented in Figure 5 in Appendix A and the borehole logs are presented in Appendix C.

### 4.3 Previous Geotechnical Investigations

Previous investigations carried on and around Stages 19 to 24 have comprised of geotechnical boreholes, test pits, cone penetration tests (CPT) and Multi-channel Analysis of Surface Waves (MASW). A summary of the previous investigations is presented in Table 2.

Table 2: Summary of relevant previous investigations

| Year | Testing Type | Relevant Test |
| :--- | :--- | :--- |
| 2011 | Boreholes | BH3 and BH4 |
| 2011 | CPTs | CPT18 to CPT27 |
| 2011 | Test Pits | TP33 to TP47 |
| 2012 | CPTs | CPT1, CPT2, CPT4 and CPT27 |
| 2012 | Test Pits | TP1 |
| 2013 | CPTs | CPT19, CPT, 21 and CPT22 |
| 2015 | Boreholes | BH102 and BH103 |
| 2015 | MASW | 3.1 km of MASW line carried out of <br> which approximately 1.1km is in <br> Stage 19 to 24. |

The location of these investigations is presented in Figures 6 and 7 in Appendix $A$ and the logs are presented in Appendix D.

### 4.4 Recent (2018) Investigations

### 4.4.1 Cone Penetration Testing

An additional 15 Cone Penetration Tests (CPT) were undertaken within Stages 19 to 24 between 18 and 22 May 2018. The CPTs were undertaken by McMillan Drilling using a track mounted CPT rig and the tests were undertaken to effective refusal (tip pressure reaching 40 MPa ) of the rig at 2 m to 7 m depth. The CPT locations are shown in Figure 6 in Appendix $A$ and the logs are presented in Appendix $E$.

### 4.4.2 Boreholes and Piezometers

Five machine boreholes were drilled to install piezometers between 17 and 18 May 2018 to allow the ongoing measurement of groundwater levels. The piezometers were drilled and installed by McMillan Drilling using a track mounted dual tube rig. As the purpose of the boreholes was to install the piezometers, Boreholes BH 201 to BH 204 in Stages 19 to 24 were blind driven to the required depths ( 3 m to 5 m ) with no soil recovered for logging. Borehole BH 205 , located to the west in a previous stage, was carried out at a
new sewer proposed pump station location. This borehole was drilled to a target depth of 12 m with Standard Penetration Tests (SPT) at 1.5 m centres and a piezometer installed with the response zone at 7 m depth.
Soil recovered from the borehole was logged by a Geotechnical Engineer from Aurecon, in accordance with NZ Geotechnical Society's Guideline for the Field Classification and Description of Soil and Rock for Engineering Purposes (NZGS, 2005).

Although Borehole BH205 is not located in Stages 19 to 24, it has been included in this report to provided information on groundwater levels. The piezometer installations comprised of 32 mm pipe with 1 m slotted section at the base of the hole. The locations of the boreholes are shown in Figure 6 in Appendix $A$ and the driller's logs are presented in Appendix F.

Previous work at Rosemerryn has found relatively complex groundwater conditions across the site with a phreatic surface at shallow depths and sub-artesian pressures within the underlying gravels. The depth to groundwater has been critical in the determining the likely site performance and hence piezometers were installed at varying depths across the site. The depth of the piezometers installation is presented in Table 3.

Table 3: Piezometer installation summary

| Borehole | Depth of <br> Installation | Comments |
| :---: | :---: | :--- |
| BH201 | 5 m | Installed in the underlying gravel to monitor sub-artesian <br> pressures |
| BH 202 | 3 m | Installed in the overlying silts and sands to measure the <br> phreatic surface. |
| BH 203 | 3 m | Installed in the overlying silts and sands to measure the <br> phreatic surface. |
| BH 204 | 4 m | Installed in the overlying silts and sands to measure the <br> phreatic surface. |
| BH 205 | 7 m | Installed in the underlying gravel to monitor to sub- <br> artesian pressures |

In addition to the piezometers, groundwater level observations were taken in tests holes carried out at the various investigation stages. These groundwater levels are likely to be less accurate than those measured in the piezometers but they can provide indicative values to correlate between piezometers.

### 4.4.3 MASW Soundings

Five Multi-channel Analysis of Surface Waves (MASW) profile lines were undertaken by Southern Geophysical Limited in May 2018. These profile lines had a total length of 1,125m and comprised individual MASW soundings at approximately 10 m centres.

From the MASW soundings, shear wave velocity profile sections have been produced for the upper 25 m of the soil profile. The MASW soundings were undertaken to obtain information between the physical control points (CPT, borehole and test pits). MASW provided information on the depths of the gravel layer as well as the presence of sand lenses within the gravel layer. The locations of the profile lines are shown in Figure 7 in Appendix A and the velocity profiles are presented in Appendix G.

The shear wave velocity $\left(V_{s}\right)$ profiles when calibrated to the CPT, test pit and borehole logs indicate:

- Upper Sands and Silts $-V_{s}<180 \mathrm{~m} / \mathrm{s}$
- Gravels (Upper 10 m ) $-180 \mathrm{~m} / \mathrm{s}<\mathrm{V}_{\mathrm{s}}<350 \mathrm{~m} / \mathrm{s}$
- Sand Lenses $-180 \mathrm{~m} / \mathrm{s}<\mathrm{V}_{\mathrm{s}}<220 \mathrm{~m} / \mathrm{s}$ (only apparent in northern part of site)
- Gravels (Deeper) $-350 \mathrm{~m} / \mathrm{s}<\mathrm{V}_{\mathrm{s}}$


## 5 Engineering Considerations

### 5.1 General

Fulton Hogan Land Development Limited is proposing to subdivide 23ha of rural land in Lincoln into Rosemerryn Stages 19 to 24 . The subdivision will comprise approximately 240 residential lots as well as reserve areas and road. The Ministry of Business, Innovation and Employment (MBIE, 2012) guidelines on residential development, requires that ground conditions and geotechnical hazards, including liquefaction, are assessed and, based on the result of this assessment, mitigation measures (if required) can be developed.

This section of the report presents the:

- Geotechnical ground model for the site.
- Potential for seismically induced liquefaction.
- Implications for building foundations.
- Assessment against the Resource Management Act (RMA) Section 106.


### 5.2 Geotechnical Ground Model

### 5.2.1 Ground Conditions

Based on the results of our geotechnical site investigation results, including calibration on the MASW soundings with intrusive investigations, the ground conditions across the site can be separated into three ground profiles. These ground profile areas are presented in Figure 8 in Appendix $A$ and are summarised in Tables 4, 5 and 6.

Table 4: Inferred Ground Profile 1 (Northern section of site)

| Unit | Depth to Start <br> of Layer | Depth to End of <br> Layer | Material |
| :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | Surface | 0.2 to 0.3 m | Topsoil |
| $\mathbf{2}$ | 0.2 to 0.3 m | 0.6 to 2.1 m | Loose to medium dense Sands and Silty Sands interbedded with <br> layers of stiff Sandy Silts and Silts |
| $\mathbf{3}$ | 0.6 to 2.1 m | 10 m onwards | Predominately medium dense to very dense Sandy Gravels and <br> Gravel with occasional sand lenses up to 1.5 m thick |

Table 5: Inferred Ground Profile 2 (Middle section of site)

| Unit | Depth to Start <br> of Layer | Depth to End of <br> Layer |  |
| :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | Surface | 0.2 to 0.7 m | Topsoil |
| $\mathbf{2}$ | 0.2 to 0.7 m | 2.5 to 4.2 m | Loose to medium dense Sands and Silty Sands interbedded with <br> layers of firm to stiff Sandy Silts, Silts and Clayey Silts |
| $\mathbf{3}$ | 2.5 to 4.2 m | 15 m onwards | Medium dense to very dense Sandy Gravels and Gravels |

Table 6: Inferred Ground Profile 3 (Southern section of site)

| Unit | Depth to Start <br> of Layer | Depth to End of <br> Layer | Material |
| :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | Surface | 0.2 to 0.4 m | Topsoil |
| $\mathbf{2}$ | 0.2 to 0.4 m | 5.1 m to 7.1 m | Loose to medium dense Sands and Silty Sands interbedded with <br> layers of soft to firm to stiff Sandy Silts, Silts and Clayey Silts |
| $\mathbf{3}$ | 5.1 m to 7.1 m | 15 m onwards | Medium dense to very dense Sandy Gravels and Gravels |

The main difference between the above soil profiles lies in the depth to the gravel layer. The gravel is at relatively shallow depths in the north part of the site and deepens to the south. Aspects of note are as follows:

- Sand lenses are present within the gravel in the northern section of the site (Ground Profile 1), as noted in Borehole BH102 at 4.56 m depth, MASW Line 4 Chainage 20m, and MASW Line 10 Chainage 217 m . The sand lenses appear to be limited in extent, with one lens logged as approximately 1.5 m thick.
- The top of the gravel in the middle section of the site (Ground Profile 2) is not a consistent surface but appears to be undulating, which likely reflects the deposition environment where the undulation represents old eroded channels that are now infilled.
- Similar to Ground Profile 2, the top of the gravel in the southern section of the site (Ground Profile 3) varies, with areas of deeper gravel such as on the western side next to Stage 18. As above the variable depth to gravel is likely to reflect the deposition environment of old eroded channels within the gravel that are now infilled.
- In the upper soil profile in the southern section of the site there are soft silt layers interbedded with firm and stiff silt layers. Generally, these soft layers are limited in thickness ranging from 0.2 m to 0.5 m thick and are typically below 2.5 m depth.

The ground conditions encountered in Stage 19 to 24 are consistent with those of the previous subdivision stages to the west.

### 5.2.2 Groundwater

The depth to groundwater is considered critical in the determining the likely site performance and therefore our assessment of the groundwater level has been carried out based on the ECan groundwater model, piezometer readings and groundwater levels encountered during the investigations.

ECan groundwater models available on Canterbury Maps, provide a depth to groundwater for wells installed at depth, presumably measuring piezometric pressures in the underlying gravel formations. A review of shallow wells located nearby monitored by ECan since 1980's indicates variable groundwater levels over the year with deeper groundwater levels from late November to early May and higher levels from late May to early November. The groundwater variability over the course of the year ranges from 0.8 m to 1.2 m . So, groundwater levels are expected to vary seasonally or with period of high or low precipitation.
Shallow piezometer readings indicate groundwater levels in the order of 1.4 m to 1.5 m depth, with the exception of BH 203 adjacent to the stream, which indicates groundwater at 1 m depth. The relative levels $(R L)$ based on these depths are presented in Table 7.

Table 7: Groundwater levels and relative levels

| Borehole | Groundwater <br> Depth $(\mathbf{m})$ | Groundwater <br> $\mathrm{RL}(\mathrm{m})$ |
| :---: | :---: | :---: |
| $\mathbf{B H 2 0 1}$ | 1.4 | 8.6 |
| $\mathbf{B H 2 0 2}$ | 1.5 | 7.8 |
| $\mathbf{B H 2 0 3}$ | 1.0 | 8 |
| $\mathbf{B H 2 0 4}$ | 1.5 | 6.6 |
| $\mathbf{B H 2 0 5}$ | 1.5 | 8.7 |

Boreholes BH 201 and BH 205 , installed in the underlying gravels, have consistent groundwater levels and RL, which is likely to represent the sub-artesian groundwater levels within the gravel. It is anticipated that this groundwater level will vary depending on the time of year and the recharge of the gravel layer. Given that this artesian pressure is within the gravel layer, it is not anticipated to govern the shallow groundwater level in the overlying soils, or influence the site liquefication potential.

Boreholes BH 202 to BH 204 , installed at shallower depths, are likely to represent the phreatic groundwater surface across the site. Based on a review of the groundwater depth, the depth to groundwater appears to be consistent across the site at 1.5 m depth but is a 1 m depth near the stream running through the centre of the site. The shallower depth may be influence by the presence of ponded water in the stream channel, or possibly there is a zone of elevated groundwater levels due to the interaction of the stream and groundwater levels in the underlying soil profile. Reviewing the groundwater level RLs indicates a general fall in water level towards the south, with an elevated RL around the stream.

The levels in Table 7 above were taken in late May, and based on water levels in the ECan wells are likely to be above median groundwater levels and hence, are considered to be suitable for assessing the site future land performance. The groundwater levels across the site are presented in Figure 9 in Appendix $A$.

The groundwater levels in Table 7 have been compared to groundwater levels encountered during the course of the various investigation, from observations within test pits and boreholes, and from dipping CPT holes. Although observations during investigations may not be accurate as measured groundwater levels, there does appear to be a reasonable level of correlation between groundwater levels in the test holes and the piezometric information on Table 7 discussed above.

It is noted that the groundwater levels in the northern part of the site are higher than those measured in the adjacent previous stages (Stage 10 to 18), but the site topography in Stage 19 to 24 is slightly lower, which will account for the relatively higher groundwater level. Further to the south a higher groundwater level of 1 m has been used in the past on the previous stages, but given that the above groundwater levels have been measured from piezometers we consider the levels in Table 7 to be more accurate.

### 5.3 Site Flexibility

We have assessed the site flexibility based on the following:

- Site stratigraphy comprises approximately sands and silts underlain by gravels to at least 15 m depth (maximum depth investigated at the site).
- Clause 3.1.3 and Table 3.2 of NZS 1170.5:2004.

We consider that the site subsoil category in terms of NZS 1170.5:2004 Clause 3.1.3 is Class D (Deep soil site).

### 5.4 Liquefaction Assessment

### 5.4.1 General

Under cyclic loading (i.e. during an earthquake) loose, non-cohesive materials such as gravels, sands, siltysands, tend to decrease in volume. This tendency to decrease in volume is much greater in loose than in dense soils. When loose non-cohesive soils are saturated and rapid loading occurs under undrained conditions, the soils densification causes pore water pressure to increase. The increase in pore water pressure results in a loss of soil strength due to a decrease in effective stress and eventually liquefaction occurs when the effective stress drops to zero. Liquefaction can lead to large displacements of foundations, flow failures of slopes and ground surface settlement, sand boils, and post-earthquake stability failures.

In determining the liquefaction potential at the site, the main factors to be considered are:

- How has the site performed during the major seismic events of the Canterbury earthquake sequence?
- Which layers have liquefied?
- What is the likelihood of further liquefaction in the future?
- How the potential liquefaction affects the development?

Each of these is considered below.

## Observations after Previous Major Earthquake Events

As outlined in Section 3.4 there is no evidence of liquefaction observed at the site after the 4 September 2010 Darfield Earthquake or any subsequent earthquakes during the Canterbury Earthquake Sequence. This suggests limited potential for soil liquefaction at the site for shaking levels close to a ULS design event.

## Potential for Liquefaction

Three primary factors contribute to liquefaction potential:

- Soil grading and density.
- Groundwater.
- Earthquake intensity and level of ground shaking.

Each of these is discussed below.

## Soil Grading and Density

The CPT logs show layers of loose to medium dense sands, silty sands and sandy silts. These layers are considered to be potentially susceptible to liquefaction from a soil grading and density perspective.

## Groundwater

We have adopted a groundwater level of 1.5 m below ground level for most of the site with an elevated groundwater level at 1 m around the stream. Therefore, soils are potentially liquefiable from a depth of 1 m to 1.5 m from a saturation criterion. It should be noted that groundwater levels are subject to seasonal changes.

## Earthquake Intensity and Level of Shaking

The level of ground shaking is one of the key factors in determining whether liquefaction will or will not occur. For this analysis, we have assessed three design levels of shaking. The residential structures to be constructed on site will likely be classified as Importance Level 2 (IL2) structures in accordance with Table 3.2 of the New Zealand structural loadings standard (NZS 1170.0.2004) and the building will have a nominal 50 year design life. To determine the design level for earthquake shaking we have adopted the MBIE/NZGS (2016) recommendations, which correspond to design level earthquake events as follows:

- ULS shaking a Mw7.5 earthquake with 0.35 g peak ground acceleration (PGA)
- SLS-a shaking a Mw7.5 earthquake with 0.13 g PGA
- SLS-b shaking a Mw6.0 earthquake with 0.19 g PGA

For an Ultimate Limit State (ULS) earthquake, buildings are expected to retain their structural integrity and form and not endanger life. Some plastic deformation of structural elements within the structure is expected to occur but ideally the damage can be repaired and the structure can be returned to service after the event, although repair may be uneconomical.

For a Serviceability Limit State (SLS) earthquake, buildings are expected to perform well for the SLS event and be returned to service after limited repair.

In addition, we have assessed two peak ground acceleration cases of the 4 September 2010 earthquake event as a back analysis of past event to calibrate the liquefaction assessment. We have considered the 4 September 2010 Darfield earthquake as there is PGA data available from the O'Rourke et al (2012) model that extended into Lincoln area. The model indicates PGAs of 0.33 g .

Based on this PGA model and the MBIE Guidelines (2012) the site has been 'sufficiently tested' as the PGA for the 4 September 2010 event exceeded $170 \%$ of the SLS PGA (i.e. $1.7 \times 0.13 \mathrm{~g}=0.22 \mathrm{~g}$ ). For the assessment we have used a PGA of 0.33 g as well as a lower bound PGA of 0.19 g (i.e. $0.33 \mathrm{~g} / 1.7$ ) to account for any uncertainty in the model. The levels of shaking used for our analysis are presented in Table 8.

The 4 September 2010 event shaking parameters are similar to ULS design event, while the lower bound 4 September 2010 event shaking parameters are similar to SLS-b design event. Given these comparable ground shaking parameters and that the site has been sufficiently tested, we consider the ground damage observations at the site after the 4 September 2010 earthquake event can be used to calibrate our liquefaction assessment.

Table 8: Earthquake design level events for liquefaction analysis

| Earthquake Event | Magnitude | Peak Ground <br> Acceleration |
| :--- | :---: | :---: |
| 4 September 2010-a | $M_{w} 7.1^{(1)}$ | $0.33 \mathrm{~g}^{(1)}$ |
| 4 September 2010-b | $M_{w} 7.1^{(1)}$ | $0.19 \mathrm{~g}^{(2)}$ |
| ULS | $M_{w} 7.5$ | 0.35 g |
| SLS-a | $M_{w} 7.5$ | 0.13 g |
| SLS-b | $M_{w} 6.0$ | 0.19 g |

(1) Magnitude and peak ground acceleration from O'Rourke et. al. (2012) (as shown on the NZGD 2018)
(2) Approximately $60 \%(1 / 170 \%)$ of the peak ground acceleration of the O'Rourke et. al. (2012) to account for uncertainty of PGA model

### 5.4.2 Liquefaction Potential Assessment

The ground investigations show that the site is directly underlain by sandy and silty soils which in turn is underlain by predominately gravels with some sand lenses. Based on the geotechnical investigations the gravels have been assessed to be non-liquefiable in design level events due to the recorded relative densities and grain size distribution. Therefore, to define the liquefaction hazard at the site we need to assess the liquefaction potential of the upper soils as well as the sand lenses within the gravel layers.

To assess the liquefaction potential of the sand lenses we have considered the relative density of the sandy layers from the SPT and shear wave velocity data, and to assess the liquefaction potential of the upper soils we have used a cone penetration test (CPT) results.

## Liquefaction in the Deeper Soil Layers

Sand lenses within the underlying gravels were encountered in Borehole BH102 (2015) and are inferred from the MASW soundings, where there are shear wave velocities between $180 \mathrm{~m} / \mathrm{s}$ and $220 \mathrm{~m} / \mathrm{s}$. The sand lenses appear to be localised in the northern part of the site.

To assess liquefaction of these sand lenses we have considered:

- SPT testing undertaken in this layer
- Shear wave velocity profiles obtained from the MASW soundings
- Consideration of past land performance including the mechanism of liquefaction triggering and the likely damage from it occurring and the previous observed lack of damage.

Using the single SPT (BH102 at 4.56m depth) from a sand lenses we have assessed the liquefaction potential of this layer based on the Boulanger and Idriss (2014) SPT based liquefaction assessment method assuming a clean sand. The calculated factors of safety are shown in Table 9.

Table 9: Summary of SPT based liquefaction analysis for sand lenses

| Earthquake Event | Calculated Factor of <br> Safety Against <br> Liquefaction |
| :--- | :---: |
| 4 September 2010-a | 0.4 |
| 4 September 2010-b | 0.7 |
| SLS-a | 1.0 |
| SLS-b | 0.8 |
| ULS | 0.4 |

From this SPT based liquefaction assessment, the sand lenses are assessed as being liquefiable even at relatively low levels of shaking. The calculated factor of safety against liquefaction for 4 September 2010 event lies between the factors of safety for a SLS and ULS design event.

To supplement this SPT result we have also considered the shear wave velocity obtained from the MASW soundings. The sand lenses have a shear wave velocity of less than $215 \mathrm{~m} / \mathrm{s}$ which, based on Idriss and Boulanger (2008), is the maximum shear wave velocity for liquefiable soils. The liquefaction analysis considered shear wave velocity from the MASW investigation using the method of Kayen et al (2013). We have taken the shear wave velocity profiles of MASW Line 4 Chainage 20 m and MASW Line 10 Chainage 217 m , which both had a low velocity pocket at depth inferred to be sand lenses in the gravel. This analysis indicates that the sand layers have a factor of safety as summarised in Table 10.

Table 10: Summary of $\mathrm{V}_{\mathrm{s}}$ based liquefaction analysis for sand lenses

| Earthquake Event | Calculated Factor of <br> Safety Against <br> Liquefaction |
| :--- | :---: |
| 4 September 2010-a | 0.5 to 0.6 |
| 4 September 2010-b | 0.9 to 1.0 |
| SLS-a | $>1.0$ |
| SLS-b | $>1.0$ |
| ULS | 0.4 to 0.5 |

The shear wave velocity method indicates that there is the potential for liquefaction of the sand lenses. However, in MASW Line 4 Chainage 20 m the liquefiable layer is at 6.5 m depth and in MASW Line 10 Chainage 217 m the liquefiable layer is at 7 m depth. In both case these are overlain by medium dense to dense gravel from ground level.

In addition, we have considered the mechanism of the liquefaction process. When loose non-cohesive soils are saturated and rapid loading occurs under undrained conditions, the soils densification causes pore water pressure to increase. The increase in pore water pressure results in a loss of soil strength due to a decrease in effective stress and eventually liquefaction occurs when the effective stress drops to zero. However, as these sand lenses as surrounded by gravel, drainage is likely to occur, limiting and reducing the build-up of excess pore water pressure, and thus reducing the liquefaction potential of these sand lenses.

The effects of these sand lenses liquefying also required needs to be considered. The log of Borehole BH 102 indicates 4.5 m of medium to very dense gravels overlying the potentially liquefiable sand lenses, while the MASW profiles indicate 6.5 m to 7 m of medium to very dense gravels overlying the potentially liquefiable sand lenses. This depth of gravel will form a thick non-liquefiable crust, which based on observations in Christchurch during the CES is likely to supress liquefaction induced ground damage on shallow founded structures, even if these sand layers were to liquefy.

Lastly, no significant ground damage, including settlement or land cracking, was observed across areas with and without sand lenses, which suggests that either theses layers did not liquefy, or the upper gravel layer has supressed the surface expression of liquefaction induced damage in these areas.

Based on this assessment we consider the that liquefaction effects occurring in these deeper localised sand lenses will have minimal effect on shallow founded domestic structures and therefore we have not considered it further in our assessment. Instead we have focussed on liquefaction in the upper soils as the main mechanism that could drive land damage in Stages 19 to 24.

## Liquefaction in the Upper Soil Layers

## Methodology

The ability for the subsoils to resist the effect of ground shaking associated with the design level events has been assessed from the upper subsoil information obtained from the CPTs. The liquefaction assessment was carried out using the methods outlined in MBIE Guidelines (2014) and are summarised in Table 11.

Table 11: Liquefaction Assessment Methodology Summary

| Test | Liquefaction Assessment ${ }^{(1)}$ | Fines Content | Liquefaction Cut Off | Liquefaction <br> Settlement <br> Method ${ }^{(2)}$ |
| :---: | :---: | :---: | :---: | :---: |
| CPT | Boulanger and Idriss (2014) | Based on a soil Character Index ( $\mathrm{I}_{\mathrm{c}}$ ) with a Co-efficient for Fines Content ( $\mathrm{C}_{\mathrm{fc}}$ ) $=0$ | Based on a $2.6 \mathrm{l}_{\mathrm{c}}$ cut off | Zhang et al (2002) |

(1) A $15 \%$ probability of liquefaction (PL) has been considered with all methods.
(2) We note that there is an inherent uncertainty when identifying liquefiable layers in CPT analysis, due to this inherent uncertainty, calculated settlements will likely differ from actual settlements experienced on site.

The fines content fitting parameter has been set as 0 as no laboratory testing has been undertaken on the soils at the site. Layers within the upper soils were inferred to be clayey silts to organic silts ( $\mathrm{I}_{c}$ greater than 2.6). As limited laboratory testing has been carried out to aid in determining a liquefaction cut off on the soils underlying the site, soils have been assumed to be non-liquefiable where the CPT Soil Character Index, Ic, is greater than 2.6.

## Liquefaction Effects

Liquefaction can have a number of effects on buildings and land. In this assessment we have considered the following effects:

- Liquefiable layers.
- Liquefaction induced reconsolidation settlement.
- Liquefaction induced ground damage.

These are discussed in the following sections:

## Liquefiable Layers

The layers which may liquefy in a design level event are critical in regards to the foundation performance. The Boulanger and Idriss (2014) method has been used in this assessment and it has been assumed that soils are liquefiable when the factor of safety is below one.

## Liquefaction Induced Settlement

The method of Zhang et. al. (2004) was used for calculating the potential liquefaction induced reconsolidation settlements in the CPT analysis. Due to the presence of dense gravel from the CPT refusal depth to at least 10 m below ground level, index settlements have been calculated from the CPT data.

## Liquefaction Induced Ground Damage

We have used two methods to assess the potential for liquefaction induced ground damage as outlined below:
a) Published information (after Ishihara, 1985) can be used to assess the potential for surface expression of liquefaction and hence the likelihood of inducing damage. Ishihara's method is for a single non-liquefiable layer overlying a single liquefiable layer only. The liquefaction analysis indicates multiple liquefiable layers within the CPT profiles and to account for this we have taken the thickness of the non-liquefied crust as the thickness from the ground surface to the top of the uppermost critical liquefiable layer, and the thickness of the critical liquefied layer as the sum of the thicknesses of all critical liquefiable layers.
Ishihara's plots do not explicitly indicate ground damage curves for specific PGAs such as 0.13 g which is the SLS level PGA. To simplify the analysis, we have used following curves to assess the ground damage:

- The 0.20 g curve when assessing damage under $S L S$ design levels of ground shaking and the lower bound 4 September 2010 Darfield Earthquake.
- The 0.40 g curve when assessing damage under ULS design level of ground shaking and the 4 September 2010 Darfield Earthquake.
b) Tonkin \& Taylor (T\&T) developed the Liquefaction Severity Number (LSN) (Tonkin \& Taylor 2013) based on investigation data and observations made following major earthquake events in Christchurch. The LSN uses the settlements calculated from the Idriss and Boulanger (2008) method with the Robertson and Wride (1998) fines content method and the Zhang et. al. (2004) settlement method to assess the expected ground damage that could be caused by liquefaction in future earthquakes. The level of ground damage associated with LSN numbers is summarised in Table 12.

Table 12: LSN descriptions

| LSN Range | Predominate Performance |
| :---: | :--- |
| $\mathbf{0 - 1 0}$ | Little to no expression of liquefaction, minor effects |
| $\mathbf{1 0 - 2 0}$ | Minor expression of liquefaction, some sand boils |
| $\mathbf{2 0 - 3 0}$ | Moderate expression of liquefaction, with sand boils and some structural <br> damage |
| $\mathbf{3 0 - 4 0}$ | Moderate to severe expression of liquefaction, settlement can cause structural <br> damage |
| $\mathbf{4 0 - 5 0}$ | Major expression of liquefaction, undulations and damage to ground surface, <br> severe total and differential settlement of structures |
| $\mathbf{5 0}$ | Severe damage, extensive evidence of liquefaction at surface, severe total and <br> differential settlement affecting structures, damage to services |

## Upper Liquefaction Results

The result of the liquefaction assessment for the 4 September 2010 event are summarised in Table 13 and the results of the design level events are summarised in Table 14. The liquefaction outputs are presented in Appendix H .

Table 13: Summary of liquefaction analysis for the 4 September 2010 Darfield Earthquake

| Earthquake Event | Earthquake Effects | Ground Profile 1 Northern Section | Ground Profile 2 Middle Section | Ground Profile 3 Southern Section |
| :---: | :---: | :---: | :---: | :---: |
| 4 September 2010 Darfield Earthquake (Mw7.1, 0.33 g ) | Liquefiable Layers ${ }^{(1)}$ | Limited layers in Unit 2 below the water level | Unit 2 below the water level | Unit 2 below the water level |
|  | Settlement ${ }^{(2)}$ | 0 to 10 mm | 10 to 55 mm | 40 to 135 mm |
|  | Ground Damage ${ }^{(3)}$ | No | Yes | Yes |
|  | LSN | 0 to 7 | 6 to 26 | 12 to 35 |
|  | Comments | Little to minor damage | Minor to Moderate damage | Moderate to major damage |
| 4 September 2010 Darfield Earthquake (Mw7.1, 0.19 g ) | Liquefiable Layers ${ }^{(1)}$ | Limited layers in Unit 2 below the water level | Some of the sandy layers of Unit 2 below the water table | Some of the sandy layers of Unit 2 below the water table |
|  | Settlement ${ }^{(2)}$ | $<10 \mathrm{~mm}$ | 0 to 45 mm | 35 to 105 mm |
|  | Ground Damage ${ }^{(3)}$ | No | Yes in parts of the site | Yes over half of the site |
|  | LSN | 0 to 4 | 1 to 20 | 10 to 25 |
|  | Comments | Little to minor damage | Minor damage | Moderate damage |

(1) Due to the inherent uncertainty in calculating liquefiable layers, the calculated layers are indicative only. Actual positions and thickness of liquefiable layers could vary from those above.
(2) Settlements are calculated over the full CPT profile. Settlements are presented to the nearest 5 mm . Due to the inherent uncertainty in calculating liquefaction induced settlements, the calculated settlements are indicative only and actual settlements will vary from those above.
(3) Ground damage based upon published information after Ishihara (1985).

Table 14: Summary of liquefaction analysis for the design level events

| Earthquake Event | Earthquake Effects | Ground Profile 1 Northern Section | Ground Profile 2 Middle Section | Ground Profile 3 <br> Southern Section |
| :---: | :---: | :---: | :---: | :---: |
| ULS <br> (1 in 500 year event) (Mw7.5, $0.35 \mathrm{~g})$ | Liquefiable Layers ${ }^{(1)}$ | Limited layers in Unit 2 below the water level | Unit 2 below the water level | Unit 2 below the water level |
|  | Settlement ${ }^{(2)}$ | 0 to 10 mm | 15 to 60 mm | 40 to 135 mm |
|  | Ground Damage ${ }^{(3)}$ | No | Yes | Yes |
|  | LSN | 0 to 7 | 7 to 26 | 12 to 35 |
|  | Comments | Little to minor damage | Minor to Moderate damage. | Moderate to major damage |


| Earthquake <br> Event | Earthquake Effects | Ground Profile 1 Northern Section | Ground Profile 2 Middle Section | Ground Profile 3 <br> Southern Section |
| :---: | :---: | :---: | :---: | :---: |
| SLS-a <br> (1 in 25 year event) $\left(M_{w} 7.5\right.$ $0.13 \mathrm{~g})$ | Liquefiable Layers ${ }^{(1)}$ | Limited layers | Limited layers | Limited layers |
|  | Settlement ${ }^{(2)}$ | $<5 \mathrm{~mm}$ | 0 to 15 mm | 10 to 60 mm |
|  | Ground <br> Damage ${ }^{(3)}$ | No | No | No |
|  | LSN | 0 | 0 to 6 | 3 to 12 |
|  | Comments | No damage | Little to no damage | Little to minor damage |
| SLS-b <br> (1 in 25 year event) ( $\mathrm{M}_{\mathrm{w}} 6.0$, $0.19 \mathrm{~g})$ | Liquefiable Layers ${ }^{(1)}$ | Limited layers | Some of the sandy layers of Unit 2 below the water table | Some of the sandy layers of Unit 2 below the water table |
|  | Settlement ${ }^{(2)}$ | $<5 \mathrm{~mm}$ | 0 to 40 mm | 30 to 90 mm |
|  | Ground Damage ${ }^{(3)}$ | No | No | Yes in parts of the site |
|  | LSN | 0 to 3 | 0 to 17 | 8 to 23 |
|  | Comments | Little to no damage | Little to minor damage | Minor to Moderate damage. |

(1) Due to the inherent uncertainty in calculating liquefiable layers, the calculated layers are indicative only. Actual positions and thickness of liquefiable layers could vary from those above.
(2) Settlements are calculated over the full CPT profile. Settlements are presented to the nearest 5 mm . Due to the inherent uncertainty in calculating liquefaction induced settlements, the calculated settlements are indicative only and actual settlements will vary from those above.
(3) Ground damage based upon published information after Ishihara (1985).

## Lateral Spreading

Lateral spreading is a co-seismic effect where surface soils move on a layer, or layers, of liquefied soil downslope or towards a free edge, such as a river or basin. Lateral spreading can occur during an earthquake under seismic loading and following the earthquake until the excess pore water pressure caused by ground shaking dissipate and the soil regains strength.
When assessing liquefaction induced lateral spreading we considered the following:

- There is a small stream which runs through the site which is approximately 0.5 m deep and 2 m to 3 m wide with no significant bank.
- In the south east corner of the site is a stormwater basin that has been installed as part of the overall Rosemerryn Subdivision development, which is in the order of 0.5 m deep.
- No other significant rivers or significant changes in height are in close proximity to the site.
- The site is relatively level and we understand that there will be no significant change in the site levels once the development is undertaken.
- We understand that no additional stormwater basins or open channels will be built as part of this development.

Based on the site topography, the depth of the stream and stormwater basin, and the depth to groundwater across the site we consider that the global lateral movement and lateral stretch potentials across the site is considered to be minor or less and will not govern the MBIE Technical Category assessment. It is noted that TC2 type foundations have the ability to sustain minor levels of lateral movement and lateral stretch. As such no further assessment of lateral spreading has been undertaken.

## Technical Classification

We have assessed the risk of future liquefaction in terms of the technical category classification system as per the MBIE Guidelines (2012 and 2014). This classification system is divided into three technical categories that reflect both the liquefaction experience to date and future performance expectations. The categories and corresponding criteria are summarised as follows:

- Technical Category 1 (TC1) - Future land damage from liquefaction is unlikely, and ground settlements are expected to be within normally accepted tolerances.
- Technical Category 2 (TC2) - Minor to moderate land damage form liquefaction is possible in future large earthquakes.
- Technical Category 3 (TC3) - Moderate to significant land damage from liquefaction is possible in future large earthquakes.

MBIE has indicated the following liquefaction and lateral spreading deformation limits for house foundations as summarised in Table 15.

Table 15: Liquefaction deformation limits and house foundation implications

| Technical Category | Index Liquefaction Deformation Limits |  |  |  | Likely Implication for House Foundations (subject to individual assessment) |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Vertical |  | Lateral Spread |  |  |
|  | SLS | ULS | SLS | ULS |  |
| TC1 | 15 mm | 25 mm | Nil | Nil | Standard NZS3604 type foundations with tied slabs |
| TC2 | 50 mm | 100 mm | 50 mm | 100 mm | MBIE enhanced foundation solutions |
| TC3 | >50mm | $>100 \mathrm{~mm}$ | $>50 \mathrm{~mm}$ | $>100 \mathrm{~mm}$ | Site specific foundation solution |

## Discussion

As the Bradley and Hughes (2012a, b) does not extend into Lincoln so we have considered the O'Rourke et. al. (2012) PGA model which indicates a PGA of 0.33 g for the 4 September 2010 Darfield Earthquake event. Based on the MBIE Guidelines (2012) the site has been 'sufficiently tested' as the median value for the PGA for the 4 September 2010 earthquake event exceeded $170 \%$ of the SLS PGA (i.e. $1.7 \times 0.13 \mathrm{~g}=0.22 \mathrm{~g}$ ).
No damage was observed on the site due to liquefaction after the 4 September 2010 earthquake event. Based upon this actual site response we infer that the liquefaction assessment method over estimates likely settlement and damage under future large earthquakes. Therefore, we have calibrated the liquefaction assessment based on observations from the previous 4 September 2010 earthquake event.

It is not possible to compare the calculated and actual settlements for the 4 September 2010 Darfield earthquake event at the site because there is no quality information on actual ground settlements. We can however make the following comments based on observations of ground performance, and calculated settlements and ground damage for the three design earthquakes:

- Based on the GNS (2012) report on liquefaction in eastern Canterbury, discussions with Fulton Hogan staff and the original farm owner who are familiar with the site, review of aerial photography, and Aurecon site walkovers in 2011, 2012, 2013 and 2015, no liquefaction induced damage was noted on the site and its direct surroundings.
- The back analysis of the 4 September 2010 earthquake indicates that moderate to major ground damage should have occurred when assessing against the measured and lower bound PGA. However, this calculated level of damage is not supported by field observations
- For the northern part of the site (Ground Profile 1) where gravel is at shallow depths, the calculated ULS settlements are less than 10 mm and the calculated SLS-b settlements are less than 5 mm which is consistent with a MBIE TC1 classification.
- To the north of the stream (Ground Profile 2), where the gravel layer is deeper, the calculated ULS settlements are between 15 mm and 60 mm and the calculated SLS-b settlements are between 0 mm and 40 mm which is consistent with a MBIE TC2 classification.
- South of the stream (Ground Profile 3), the calculated ULS settlements are between 40 mm and 135 mm and the calculated SLS-b settlements are between 30 mm and 90 mm which is consistent with MBIE TC2 and TC3 classifications respectively. These calculated settlements are similar to the 4 September 2010 earthquake back analysis.
The back analysis also indicates that in a ULS event moderate to major damage is likely which is similar those calculated in the 4 September 2010 earthquake event, and in a SLS-b event minor to moderate damage is likely, which is less than that calculated for the 4 September 2010 earthquake event lower bound PGA.
The assessment also calculated that lower levels of vertical settlement and ground damage will occur in a SLS-a earthquake event than the 4 September 2010 Darfield Earthquake.

In summary, south of the stream, the liquefaction assessment overstates the liquefaction potential when compared to actual site performance as only limited to minor damage was observed at and around the site after the 4 September 2010 earthquake event but the back analysis indicates that moderate to major ground damage should have occurred.

Hence, based on our liquefaction assessment, and the observed ground damage we infer that minor to moderate land damage from liquefaction is possible in future large earthquakes at parts of the site.
Therefore, we conclude:

- The northern part of the site underlain by shallow gravel is consistent with a Technical Category 1 (TC1) classification.
- The remainder of Stage 19 to 24 is consistent with a Technical Category 2 (TC2) classification. The areas of TC1 and TC2 classified land are shown in Figure 11 in Appendix A.


### 5.4.3 Summary of MBIE Technical Category Liquefaction Assessment

The liquefaction analysis indicates the following:

- Based on the O'Rourke et. al. (2012) PGA model the site has been "sufficiently tested" (MBIE Guidelines (2012)) as the median value for the PGA for the 4 September 2010 event exceeded $170 \%$ of the SLS PGA (i.e. $1.7 \times 0.13 \mathrm{~g}=0.22 \mathrm{~g}$ ). Therefore, we have used the lack of ground damage observed at the site after the 4 September 2010 earthquake event to calibrate our liquefaction assessment.
- The GNS report on liquefaction (GNS, 2012), a review of aerial photography, and site observations made by Aurecon and Fulton Hogan staff confirms there was no evidence of liquefaction observed at the site after the 4 September 2010 Darfield earthquake, or any subsequent earthquakes in the Canterbury Earthquake Sequence.
- In the northern part of the site liquefaction induced settlements and damage are likely to be minimal and are consistent with a TC1 classification while elsewhere the calculated liquefaction induced settlements and assessed ground damage are consistent with a TC2 or TC3 classification. However, when compared to actual site performance, the level of calculated damage is overstated, as the back analysis indicates that moderate to major ground damage should have occurred, when only limited to minor damage was observed at and around the site.
- The liquefaction induced lateral spreading potential is considered to be minor.
- Based on our liquefaction assessment and observed ground damage we infer that minor to moderate land damage from liquefaction is possible in future large earthquakes at parts of the site.
- Therefore, based on our liquefaction assessment, we consider that the northern part of Stage 19 to 24 is consistent with a Technical Category 1 (TC1) classification and the remainder of the site is consistent a Technical Category 2 (TC2) classification, see Figure 11 in Appendix A.


### 5.5 Liquefaction Mitigation

### 5.5.1 General

We consider that parts of the site in its current assessed state are susceptible to varying degrees of seismically induced liquefaction in a future major seismic event. In terms of liquefaction hazard mitigation at this site, and considering the proposed site layout and development, there are two basic approaches available as follows:

## Building Strengthening

Structurally design the building to accommodate the effects of liquefaction. Examples of this include using raft or piled foundations. These methods do not remove the liquefaction hazard but reinforce the structure in such a way that it maintains stability during a liquefaction event. This approach is recommended in the TC2 equivalent area.

## Ground Improvement

Improve the soil at the site so that it is less susceptible to seismically induced liquefaction. This general approach can be divided into three categories:

1. Densify the soil so that soil grain skeleton will not collapse under earthquake loading. Examples of this include compaction and replacement (refilling with material which will not liquefy).
2. Soil reinforcement. Examples include stone columns, driven piles to densify and stiffen the soil, deep soil mixing, soil cement columns etc.
3. Allow dissipation of excess pore water pressure so that liquefaction is reduced. Examples of this include installation of drains, drainage blankets, and or stone columns.

The recommended approach for liquefaction mitigation in each Technical Category classification zone is discussed below.

### 5.5.2 Technical Category 1

As per the MBIE (2012) Guidelines with TC1 sites "Future land damage from liquefaction is unlikely, and ground settlements from liquefaction effects are expected to be within normal accepted tolerances". For Technical Category 1 areas the MBIE Guidelines has recommended Standard NZS3604:2011 type foundations with tied slabs provided there is suitable bearing.
MBIE Guidelines recommend that a site specific geotechnical assessment be carried out by suitability qualified chartered engineer with experience in residential house development at the detailed house design stage.

### 5.5.3 Technical Category 2

This section provides generic foundation advice for the wider subdivision development. It does not constitute a detailed design of house foundations. Additional investigations will be required at the building consent stage for each house to determine the appropriate foundations and to support a building consent application.

It is considered that parts of the site in its current assessed state is consistent with a MBIE TC2 classification. Land with the deformation characteristics of TC2 does not meet the definition of "good ground" as per the New Zealand Standards (NZS3604 'Timber Framed Buildings’ and NZS4229 'Concrete Masonry Buildings not requiring Specific Engineering Design') without modification to the standard foundation system
as described below. The generic foundation types in these documents are not appropriate due to their potential for damage in liquefaction events.

The risk of building damage due to liquefaction in TC2 land can be mitigated by providing strengthened foundations, which reduce the differential settlement of the building and are designed to be readily relevellable following a major earthquake. There are a range of standard foundation types available for TC2 land which are presented in the MBIE Guidelines and include enhanced raft or rib raft foundations.

Although it is not an explicit consent requirement, we recommend that lightweight cladding and roofing materials are used on all dwellings in TC2 areas, as reducing the dwelling mass will lead to reduced foundation movements and less building damage in future large earthquakes.

As part of the detailed foundation design, particular attention should be paid to detailing the connection joints of buried services (water and sewer pipes, power conduits, etc.) between the house foundation and the insitu ground. The design should allow sufficient movement and ductility to account for seismic shaking and liquefaction induced movement, and to allow for easy reinstatement if they were to be damaged during a future seismic event.

Other foundation solutions are available (i.e. ground improvement to achieve TC1 site characteristics etc.). However, these options are unlikely to be economic relative to the options below.

It should be noted that this report provides guidance only on residential foundation design and should not be taken as detailed design. MBIE Guidelines require that for detailed house design, a site specific geotechnical assessment shall be carried out by suitability qualified chartered engineer with experience in residential house development.

### 5.6 Bearing Capacity

The criteria for determining whether suitable founding is available follows that outlined in Section 3 of NZS 3604: 2011 'Timber-framed Buildings'. NZS 3604 requires:

## Clause 3.4.1

All foundations shall bear on a solid bottom in undisturbed good ground material or upon firm fill where a certificate of suitability has been issued under NZS 4431.

Where good ground is at a depth greater than 0.6 m , the excavation between the good ground and the foundation base may be filled with mass concrete having a minimum strength of 10 MPa at 28 days.

Clause 3.3.7.1
The soil below the underside of the foundations shall be assumed to have a bearing pressure of not less than 300kPa when:
a) None of the following is encountered below the depth of the underside of the proposed footing at any test site:
i) Organic Topsoil;
ii) Soft or very soft peat;
iii) Soft or very soft clay;
iv) Fill material except where a certificate of suitability has been issued in terms of NZS 4431;
b) Scala Penetrometer tests conducted in accordance with 3.3.2(a) where the number of blows per 100 mm depth of penetration below the underside of the proposed footing at each test sites exceeds:
i) Five down to a depth equal to the width of the widest footing below the underside of the proposed footing;
ii) Three at greater depths; and
iii) Providing the set blow is relatively uniform, the number of blows per 100 mm may be obtained by averaging the number of blows for depths not exceeding 300 mm ; and
c) Comparison of results at all test sites show that soil conditions are closely similar at each test site.

We interpret Clause 3.4.1 as meaning that if "good ground" is found at less than 600 mm depth, the foundations will comply with the requirements of NZS 3604. Otherwise, specific engineering design is required.

Based on the available investigation logs it is unlikely that shallow bearing for a typical house foundation of 300 kPa ultimate bearing capacity could be achieved in these areas. Therefore "good ground" as per New Zealand Standards Timber Framed Buildings (NZS3604:2011) and Concrete Masonry Buildings Not Requiring Specific Engineering Design (NZS4229:1999) will not be met and specific ground investigations and foundation design will be required based at the building consent stage.
Therefore, irrespective of any potential liquefaction risk at the site, typical light weight timber framed or masonry houses (which would generally be designed within the guidelines of NZS3604:2011 or NZS4229:1999) will require specific foundation investigation and design. TC2 enhanced slab foundations are suitable for bearing capacities of 200 kPa and can be modified for lower bearing capacities, so it is likely that TC2 enhanced slab foundations will be suitable for the lower bearing soil as well as mitigation against liquefaction induced land damage.

It is noted that earthworks across Stages 19 to 24 is likely to include placement of fill. Depending on the depth of the fill, and provided it is placed to a suitable level of compaction, the earthworks may render the site compliant with the definition of "good ground", however this will need to be assessed on a lot by lot basis as part of the building consent investigations.
It is noted that soft layers are present south of the stream ranging from 0.2 m to 0.5 m thick and typically below 2.5 m depth. At these depths, settlement of the soft layer is anticipated to be negligible under additional surcharge. TC2 enhanced foundation systems are suitable solutions as raft foundations can distribute the loads and induced deformations to acceptable limits.

In any case, site specific testing (including hand augers and DCPs) will be required on the individual lots to determine ground conditions and provide bearing capacities of residential building design.

## 6 Assessment Against the RMA

Section 106 of the Resource Management Act (RMA) (2017) states inter alia

## Consent authority may refuse subdivision consent in certain circumstances

1) A consent authority may refuse to grant a subdivision consent, or may grant a subdivision consent subject to conditions, if it considers that-
a) there is a significant risk from natural hazards; or
b) Repealed
c) sufficient provision has not been made for legal and physical access to each allotment to be created by the subdivision.

1A) For the purpose of subsection (1) (a), an assessment of the risk from natural hazards requires a combined assessment of-
a) the likelihood of natural hazards occurring (whether individually or in combination); and
b) the material damage to land in respect of which the consent is sought, other land, or structures that would result from natural hazards; and
c) any likely subsequent use of the land in respect of which the consent is sought that would accelerate, worsen, or result in material damage of the kind referred to in paragraph (b).
2) Conditions under subsection (1) must be-
a) for the purposes of avoiding, remedying, or mitigating the effects referred to in subsection (1); and
b) of a type that could be imposed under section 108.

A risk assessment approach has been undertaken on the significant geotechnical hazards that may affect the site, which is presented in Appendix I.

Based on this assessment we consider that at the site there are no significant geotechnical hazards other than the potential for earthquake induced soil liquefaction of varying degrees. However, provided that the geotechnical recommendations provided within this report are followed, and the appropriate engineering measures are implemented, then we consider that the development is unlikely to be significant affected by geotechnical hazards nor will the development worsen, accelerate or result in material damage. Therefore, from a geotechnical perspective we consider that Stage 19 to 24 of the Rosemerryn residential subdivision development can proceed.

Boulanger, R. W. and Idriss, I. M., 2014. CPT and SPT based liquefaction triggering procedures. Report No. UCD/CGM-14/01. Center for Geotechnical Modelling, Department of Civil and Environmental Engineering, University of California, Davis, California.
Bradley and Hughes 2012a. Conditional Peak Ground Accelerations in the Canterbury Earthquakes for Conventional Liquefaction Assessment, Technical Report for the Ministry of Business, Innovation and Employment, April 2012. 22p.
Bradley and Hughes 2012b. Conditional Peak Ground Accelerations in the Canterbury Earthquakes for Conventional Liquefaction Assessment: Part 2, Technical Report for the Ministry of Business, Innovation and Employment, December 2012. 19p.
Canterbury Geotechnical Database (CGD), 2015. Retrieved 9 February 2015 from
https://canterburygeotechnicaldatabase.projectorbit.com/
Canterbury Maps, 2014. Retrieved 20 May 2018 from http://canterburymaps.co.nz/
ECan, 2015. http://canterburymaps.govt.nz/Viewer/\#webmap=0c3ca2ccfe1145c5849dc39864590d0b Accessed 20 May 2018.
Forsyth, P.J., Barrell, D.J.A., Jongens, R. (2008) (compilers), Geology of the Christchurch Area, Institute of Geological and Nuclear Sciences 1:250 000 Geological Map 16. Lower Hutt, New Zealand. GNS Science. ISBN 987-0-478-19649-8.

Geonet, 2018.https://www.geonet.org.nz/earthquake/3366146 (20/5/2018)
Geonet, 2018 https://www.geonet.org.nz/earthquake/3468575 (20/5/2018)
GNS, 2018a. http://maps.gns.cri.nz/website/af/viewer.htm (20/5/2018)
GNS, 2018b. http://www.gns.cri.nz/Home/News-and-Events/Media-Releases/earthquake-part-of-aftershock-sequence (20/5/2018)

GNS, 2012. Review of liquefaction hazard information in eastern Canterbury, including Christchurch City and parts of Selwyn, Waimakariri and Hurunui Districts, Report No. R12/83

Idriss, I. M., Boulanger, R. W. 2008. Soil Liquefaction During Earthquakes. EERI monograph MNO12. Earthquake Engineering Institute, Oakland, California, USA.
Ishihara, 1985. Stability of natural deposits during earthquakes. Proceedings, $11^{\text {th }}$ International Conference on Soil Mechanics and Foundation engineering, Vol 1, pp. 321-376.
Kayen, R., Moss, R.E.S., Thompson, E.M., Seed, R.B., Cetin, K.O., Der Kiureghian, A., Tanaka, Y. and Tokimatsu, K. 2013. Shear-WaveVelocity-Based Probabilistic and Deterministic Assessment of Seismic Soil Liquefaction Potential. Journal of Geotechnical and Geoenvironmental Engineering, Volume 139, Issue 3, March 1, 2013, pages 407-419.

Ministry of Business, Innovation and Employment (MBIE), 2012. Revised issue of Repairing and rebuilding houses affected by the Canterbury earthquakes. December 2012. Ministry of Business, Inovation and Employment, Wellington, New Zealand.

Ministry of Business, Innovation and Employment (MBIE), 2014. Clarifications and update to the Guidance Repairing and rebuilding houses affected by the Canterbury earthquakes. October 2014. Ministry of Business, Inovation and Employment, Wellington, New Zealand.
NZGS, 2005. Field Description of Soil and Rock. Guideline for the Field Classification and Description of Soil and Rock for Engineering Purposes. NZ Geotechnical Society Inc, Wellington, New Zealand.
NZS 1170.5:2004: Structural Design Actions Part 5: Earthquake actions - New Zealand, Wellington, New Zealand: Standards New Zealand
NZS 3604:2013: Timber-framed buildings - New Zealand, Wellington, New Zealand: Standards New Zealand

NZS 4229:2013: Concrete masonry buildings not requiring specific engineering design - New Zealand, Wellington, New Zealand: Standards New Zealand
O'Rourke, T.D., Jeon, S.S., Toprak, S., Cubrinovski, M. and Jung, J.K. (2012). Underground Lifeline System Performance during the Canterbury Earthquake Sequence, Proceedings of the 15th World Congress on Earthquake Engineering (15WCEE), Lisbon, Portugal, 24-28 Sep 2012
Robertson and Wride, 1998. Evaluating cyclic liquefaction potential using the cone penetration test. Canadian Geotechnical Journal, Vol. 35, pp. 442-459.
Tonkin and Taylor Ltd, 2013. Liquefaction Vulnerability Study. Prepared for the Earthquake Commission, T\&T Ref. 52020.0200/v1.0.
Zhang, Robertson, and Brachman, 2002. Estimating liquefaction-induced ground settlements from CPT for level ground. Canadian Geotechnical Journal, Vol. 39, pp.1168-1180.

We have prepared this report in accordance with the brief as provided. The contents of the report are for the sole use of the Client and no responsibility or liability will be accepted to any third party. Data or opinions contained within the report may not be used in other contexts or for any other purposes without our prior review and agreement.

The recommendations in this report are based on data collected at specific locations and by using appropriate investigation methods with limited site coverage. Only a finite amount of information has been collected to meet the specific financial and technical requirements of the Client's brief and this report does not purport to completely describe all the site characteristics and properties. The nature and continuity of the ground between test locations has been inferred using experience and judgment and it must be appreciated that actual conditions could vary from the assumed model.

Subsurface conditions relevant to construction works should be assessed by contractors who can make their own interpretation of the factual data provided. They should perform any additional tests as necessary for their own purposes.

Subsurface conditions, such as groundwater levels, can change over time. This should be borne in mind, particularly if the report is used after a protracted delay.

This report is not to be reproduced either wholly or in part without our prior written permission.









$\square$ INE179גurecon |lilifuton hogan ww.aurecongroup.com
ROSEMERRYN SUBDIVISION
GROUNDWATER LEVELS
BACKGROUND IMAGINE PROVIDED BY DAVIE LOVELL-SM
mamesen re
$\square$

 TV -7 (2)


Groundwater level at
approximately 1.5 m depth


雱
(2)
-

## (

4
2
aurecon ||ffrulton Hogan vwaurerongroup.com


路

[^0]


Map boundaries are indicative only and are only be used as a visual tool.
based liquefaction analysis only, assuming a CFC of 0.0 and PL of $15 \%$.
technical
Equivalent technica
categories are based on CP TC1 Equivalent
behaviour
TC2 Equivalent
behaviour

-id visul $\square$


## DLS Plans



ECan Logs

Borelog for well M36/8674
Grid Reference (NZTM): $1559985 \mathrm{mE}, 5167473 \mathrm{mN}$
Location Accuracy: 2-15m
Ground Level Altitude: $8.5 \mathrm{~m}+\mathrm{MSD}$ Accuracy: $\approx 2.5 \mathrm{~m}$
Driller: not known

Drill Method: RotaryPercussion
Borelog Depth: 6.0 m Drill Date: 09-Oct-2008

|  | Vister |  |
| :--- | :--- | :--- | :--- |
| Levei | Depth $(m)$ | Full Drilers Description |

Borelog for well M36/8675
Grid Reference (NLTM): $1560265 \mathrm{mE}, 5167627 \mathrm{mN}$
Location Accuracy: 2-15m
Ground Level Altitude: $8.0 \mathrm{~m}+\mathrm{MSD}$ Accuracy: $\& 2.5 \mathrm{~m}$
Driller. not known
Drill Method: Rotary/Percussion
Borelog Depth: 5.8 m Drill Date: 09-Oct-2008

Environment
Canterbury
Regional Council
Kounihera Talao hi Waftaha

| Wester | Lever | Depth $(m)$ | Full Drilers Description |
| :--- | :--- | :--- | :--- |

## Borelog for well M36/8676

Grid Reference (NZTM): $1560062 \mathrm{mE}, 5167719 \mathrm{mN}$ Location Accuracy: 2-15m
Ground Level Altitude: $9.3 \mathrm{~m}+\mathrm{MSD}$ Accuracy: $\approx 2.5 \mathrm{~m}$
Driler. nol known
Drill Method: Rotary/Percussion
Borelog Depth: 5.2 m Drill Date: 09-Oct-2008


## Borelog for well M36/8679

Grid Reference (NZTM): $1560150 \mathrm{mE}, 5167922 \mathrm{mN}$
Location Accuracy: 2-15m
Ground Level Altitude: $10.1 \mathrm{~m}+\mathrm{MSD}$ Accuracy: $=2.5 \mathrm{~m}$
Driler: not known
Drill Method. Rotary/Percussion
Borelog Depth: 5.8 m Drill Date: 09-Oct-2008

Regional Council
Hounihera Talao ki Waitaha


## Borelog for well M36/8680

Grid Reference (NZTM): 1560211 mE, 5168084 mN
Location Accuracy: 2-15m
Ground Level Altitude: $10.1 \mathrm{~m}+\mathrm{MSD}$ Accuracy: $\leqslant 2.5 \mathrm{~m}$
Driller: not known

Drill Method: Rotary/Parcussion
Borelog Depth: 6.7 m Drill Date: 09-Oct-2008


Previous
Investigations
Last Goneroted: 18/10:2011 12:50:53 p.m.



| OUIRECORI | Client: FULTON HOGAN LAND DEVELOPMENT | 80 |
| :--- | :--- | :--- |
|  | Project Name: ROSEMERRYN FARM SUBDNSION |  |
| Location: SEE PLAN |  |  |



Database Fie: TEST PITS.GPJ, Library. COFY OF CHCH LIRRARY MARCH 2014.OLE, Date template: CHCH OATA TEMPLATE NON 2010.GDT, Last Genertect: $19 \% 10 / 2011$.

| qurecon <br> Acrucon (lias Zorisor) Liviol <br> Unt 1, TDP Comendid Nord <br> popok to8) <br> Cridehuch eien <br>  <br>  | Client: FULTON HOGAN LAND DEVELOPMENT <br> Project Name: ROSEMERRYN FAR蟹 SUBDIVSION <br> Location: SEE PLAN <br> Project Reference: 224464 |  | BH04 <br> Sheot 2 of 2 |
| :---: | :---: | :---: | :---: |
| BOREFOLEINFORMATION <br> Drilling Method: CAT 312 Track Rtg <br> Diameter Core: 100 mm <br> Contrectin: Mctillien Driling | CO-ORDINATES WAA Eesting: <br> Northing: <br> Ground Level: N/A |  |  |



## CPT ANALYSIS NOTES

## Soil Type

Interpretation using chart of Robertson \& Campanella (1983). This is a simple but well proven interpretation using cone tip resistance ( $\mathrm{q}_{\mathrm{c}}$ ) and friction ratio ( $\mathrm{f}_{\mathrm{R}}$ ) only. No normalisation for overburden stress is applied. Cone tip resistance measured with the piezocone is corrected with measured pore pressure ( $u_{c}$ ).


## Liquefaction Screening

The purpose of the screening is to highlight susceptible soils, that is sand and siltsand in a relatively loose condition. This is not a full liquefaction risk assessment which requires knowledge of the particular earthquake risk at a site and additional analysis. The screening is based on the chart of Shibata and Teparaksa (1988).


High susceptibility is here defined as requiring a shear stress ratio of 0.2 to cause liquefaction with $\mathrm{D}_{50}$ for sands assumed to be 0.25 mm and for silty sands to be 0.05 mm .
Medium susceptibility is here defined as requiring a shear stress ratio of 0.4 to cause liquefaction with $D_{50}$ for sands assumed to be 0.25 mm and for silty sands to be 0.05 mm.

Low susceptibility is all other cases.

## Relative Density ( $\mathrm{D}_{\mathrm{R}}$ )

Based on the method of Baldi et. al. (1986) from data on normally consolidated sand.

## Undrained Shear Strength ( $\mathbf{S}_{\mathrm{u}}$ )

Derived from the bearing capacity equation using $S_{U}=\left(q_{c}-\sigma_{v o}\right) / 15$.

DRILLING SERVICES
$q_{c}(\mathrm{MPa})$


Type Liq
50


Dr (\%)
$\mathrm{Su}(\mathrm{KPa})$
$\begin{array}{llllllllll}0 & 20 & 40 & 60 & 80 & 0 & 40 & 80 & 120 & 160\end{array}$








Job No: 9402
CPT No: CPTu018
Project:
FH C/o Aurecon

Date: 27/08/11
Operator: J. Kendrick
Remark: Effective Refusal
$\mathrm{q}_{\mathrm{c}}$ (MPa)
Type Liq

50


Dr (\%)
$\begin{array}{lllllllllll}0 & 20 & 40 & 60 & 80 & 0 & 40 & 80 & 120 & 160 & 2\end{array}$

Job No: 9402
CPT No: CPTu019
Project: FH C/o Aurecon

Date: 27/08/11
Operator: J. Kendrick
Remark: Effective Refusal








Job No: 9402
CPT No: CPTu020
Project: FH C/o Aurecon

Date: 27/08/11
Operator: J. Kendrick
Remark: Effective Refusal


Type Liq
iq
50


Dr (\%)
$\mathrm{Su}(\mathrm{KPa})$
$\begin{array}{llllllllll}0 & 20 & 40 & 60 & 80 & 0 & 40 & 80 & 120 & 160\end{array}$





Job No: 9402
CPT No: CPTu021
Project: FH C/o Aurecon

Date: 27/08/11
Operator: J. Kendrick
Remark: Effective Refusal



Job No: 9402
CPT No: CPTu023
Project:
FH C/o Aurecon
Location: Rosemerryn, Edward St, Lincoln

Date: 27/08/11
Operator: J. Kendrick
Remark: Effective Refusal

DRILLING SERVICES

$\begin{array}{llllllllll}0 & 20 & 40 & 60 & 80 & 0 & 40 & 80 & 120 & 160\end{array}$




Job No: 9402
CPT No: CPTu024
Project: $\quad$ FH C/o Aurecon

Date: 27/08/11
Operator: J. Kendrick
Remark: Effective Refusal
DRILLING SERVICES


Job No: 9402
CPT No: CPTu025
Project: FH C/o Aurecon

Date: 27/08/11
Operator: J. Kendrick
Remark: Effective Refusal
$q_{c}$ (MPa)


$\begin{array}{llllllllll}0 & 20 & 40 & 60 & 80 & 0 & 40 & 80 & 120 & 160\end{array}$




Job No: 9402
CPT No: CPTu026
Project: FH C/o Aurecon

Date: 27/08/11
Operator: J. Kendrick
Remark: Effective Refusal

Location: Rosemerryn, Edward St, Lincoin


Type Liq

50



Job No: 9402
CPT No: CPTu027
Project: FH C/o Aurecon

FHClo Aurecon

Date: 27/08/11
Operator:
J. Kendrick

Remark: Effective Refusal
aurecon

POBOX 1091
Onritemurch 1419
Onratemurch 8140
 Fecurice +643379 e0s EviA onnichuotphasuniongxp
Client: FULTON HOGAN LAND DEVELOPMENT Project Name: ROSEMERRYN Location: SEE PLAN
Project Reference: 224464
Sheet 1 of 1


Client: FULTON HOGAN LAND DEVELOPMENT
Project Name: ROSEMERRYN RESIDENTIAL SUBDIVISION



nurecon ivee Zeatindi Umated
${ }^{2} 122$ Slouresser
PO $80 \times 1051$
Chnstchurch 8141
New Zeilund
wrow aurecangroup.com
 +6433660821
+5433796955

Client: FULTON HOGAN LAND DEVELOPMENT Project Name: ROSEMERRYN RESIDENTIAL SUBDIVISION Location: SEE PLAN
Project Reference: 224464
$\begin{array}{ll}\text { CO-ORDINATES NZTM } \\ \text { Easting: } & 1560038 \mathrm{~m} \\ \text { Northing: } & 5167595 \mathrm{~m}\end{array}$ Northing:
Ground Level: N/A
-


Logged by: LFS
Input by:
Checked by: JSM
Verified by: JK
Sheet 1 of 1
or
r
-
-


| CO-ORDINATES NZTM |  |
| :--- | :--- |
| Easting: | 1560116 m |
| Northing: | 5167779 m |
| Ground Level | N/A |


| Date Started: | 9/09/2011 | Logged by: LFS |  |
| :--- | :--- | :--- | :--- |
| Date Completed: | $9 / 09 / 2011$ | Input by: | LFS |
|  |  | Checked by: JSM |  |
|  | Verified by: JK |  |  | Contractor: Fulton Hogan




Client: FULTON HOGAN LAND DEVELOPMENT Project Name: ROSEMERRYN RESIDENTIAL SUBDIVISION Location: SEE PLAN
Project Reference: 224464




Qurecoll
Client: FULTON HOGAN LAND DEVELOPMENT Project Name: ROSEMERRYN RESIDENTIAL SUBDIVISION
122 Gtruyesile Str
PO BOX 1051
PO BOX 1051
Chnstchurch 8140
Chnstchurch 1140
New Zeeland
Now Zealand Fazurnle
dientene +5433660821
axpule +543379695
TEST PIT INFORMATION Excavalor Type: 30t Excavator
Test Pit Dimensions: Location: SEE PLAN
Project Reference: 224464
Sheet 1 of 1
CO-ORDINATES NZTM
Easting: $\quad 1560286 \mathrm{~m}$
Northing: $\quad 5167924 \mathrm{~m}$
Ground Level: N/A

| Date Started: | 9/09/2011 | Logged by: LFS |
| :--- | :--- | :--- |
| Date Completed: | $9 / 09 / 2011$ | Input by: LFS |
|  |  | Checked by: JSM |
|  | Verified by: JK |  |


122 Glourester Sireel
PO BOX 1051
PO BOX 1051
Chnstchurch 8140
Chnsitehurch
New Zealend
wewn aurecongroup com
Teltupone +6433660321
Fathimber +643379955
Client: FULTON HOGAN LAND DEVELOPMENT Project Name: ROSEMERRYN RESIDENTIAL SUBDIVISION Location: SEE PLAN
Project Reference: 224464












Client: Fulton Hogan Land Development Limited
TP01 Project Name: Rosemerryn Farm Subdivision
Location: Stage 7 to 15
Project Reference: 224464













































|  | BOREHOLE RECORD | - HOLE NO. | BH102 |
| :---: | :---: | :---: | :---: |
| www.aurecongroup.com |  | PROJECT NO. | 224464 |
| PROJECT $\begin{aligned} & \text { Rosemerryn Subdivision } \\ & \text { Lincoln }\end{aligned}$ |  |  |  |
| DP | CO-ORDINATES (NZTM) <br> E 1560211 <br> N 5168161 | SHEET 1 | of 2 |
| MACHINE \& NO. VTR 9700-D Truck |  | DATE from 22/01/2015 | to 22/01/2015 |
| FLUSHING MEDIUM Water | ORIENTATION VERTICAL | GROUND-LEVEL | +9.00 m RL |





| aurecon <br> www.aurecongroup.com | BOREHOLE RECORD | HOLE NO. |  | BH103 |
| :---: | :---: | :---: | :---: | :---: |
|  |  | PROJECT NO. |  | 224464 |
| PROJECT $\begin{aligned} & \text { Rosemerryn Subdivision } \\ & \text { Lincoln }\end{aligned}$ |  |  |  |  |
| DP | CO-ORDINATES (NZTM) E 1560056 | SHEET 1 | of | 2 |
| MACHINE \& NO. VTR 9700-D Truck |  | DATE from 28/01/2015 | to | 28/01/2015 |
| FLUSHING MEDIUM Water | ORIENTATION VERTICAL | GROUND-LEVEL | +9.00 | m RL |



| (1) 0 园 | BOREHOLE RECORD | HOLE NO. |  | BH103 |
| :---: | :---: | :---: | :---: | :---: |
| www.aurecongroup.com |  | PROJECT NO. |  | 224464 |
| PROJECT $\begin{aligned} & \text { Rosemerryn Subdivision } \\ & \text { Lincoln }\end{aligned}$ |  |  |  |  |
| DP | CO-ORDINATES (NZTM) <br> E 1560056 <br> N 5167722 | SHEET 2 | of | 2 |
| MACHINE \& NO. VTR 9700-D Truck |  | DATE from 28/01/2015 | to | 28/01/2015 |
| FLUSHING MEDIUM Water | ORIENTATION VERTICAL | GROUND-LEVEL | +9.00 | m RL |



MASW Investigation:
Rosemerryn Farm
Lincoln
Report prepared for Aurecon


## Southern <br> Geophysical Ltd

3/28 Tanya St, Bromley, Christchurch 8062

Data collected and report prepared by:
Christian Rüegg, Geophysicist
Rebecca Gilbert, Geologist
Michael Finnemore, Senior Geophysicist

## Table of Contents

$\qquad$Summary:2
Methodology: ..... 2
Results: ..... 2
Conclusions: ..... 3
Disclaimer: ..... 4

## Summary:

A series of nine MASW (Multi-channel Analysis of Surface Waves) lines were surveyed at Rosemerryn Farm near Lincoln on January $15^{\text {th }}$ and January $16^{\text {th }}$, 2015. The survey was designed to image variations in shear-wave velocities to a maximum depth of 25 m . The MASW data was of good quality. The material in the first 5 m below ground is of low shear-velocity across much of the site (100 $\mathrm{m} / \mathrm{s}$ to $150 \mathrm{~m} / \mathrm{s}$ ), with a jump to $200 \mathrm{~m} / \mathrm{s}$ at around 5 m depth, generally increasing to over $500 \mathrm{~m} / \mathrm{s}$ between 15 m and 20 m depth.

## Methodology:

MASW is a geophysical technique that uses the dispersive nature of surface waves to determine a model of the shear wave velocity versus depth of the subsurface.

The MASW data was collected with a 24 channel seismic array. The geophone spacing was 1 m and the seismic source was an accelerated weight drop (AWD). The source offset from the nearest receiver was kept constant at 10 m for the MASW Lines. Recording parameters for the MASW survey were set with a 0.25 ms sample interval, 1.5 s record length, 24 dB gains, and an electric trigger system. MASW points were collected at 10 m intervals along the lines.

The field records were processed using the Kansas Geological Survey software package SurfSeis4 ©. The geometry was set according to the survey parameters and the dispersion curves were generated and edited. The inversions were run using a 10 layer variable depth model.

## Results:

The output shear-wave velocity data is included as a series of CSV files (supplementary to this report). The velocity data was interpolated into 2D MASW profiles for the MASW lines

A total of nine MASW lines were surveyed at the site (Figure 1). The MASW data was generally of good quality, although ambient noise from wind did affect a number of shot records.

## Conclusions:

The MASW results provide a model of Vs values across the Rosemerryn Farm site to a depth between 20 m and 25 m (Figures 2 to 7 ). The near surface material, to a depth of 4 m , is of relatively low velocity ( $<100 \mathrm{~m} / \mathrm{s}$ to $180 \mathrm{~m} / \mathrm{s}$ ). This low velocity layer seems to be laterally continuous across much of the site, with the exception of the northern part of the site. MASW Lines 03,04 , and the first 45 m of Line 05 show higher velocity material in the near surface. Correlation with borehole information would allow changes in shear-wave velocity at gravel and other geological interfaces to be determined.

## Disclaimer:

This document has been provided by Southern Geophysical Ltd subject to the following:

Non-invasive geophysical testing has limitations and is not a complete source of testing. Often there is a need to couple non-invasive methods with invasive testing methods, such as drilling, especially in cases where the non-invasive testing indicates anomalies.

This document has been prepared for the particular purpose outlined in the project proposal and no responsibility is accepted for the use of this document, in whole or in part, in other contexts or for any other purpose. Southern Geophysical Ltd did not perform a complete assessment of all possible conditions or circumstances that may exist at the site. Conditions may exist which were undetectable given the limited nature of the enquiry Southern Geophysical Ltd was retained to undertake with respect to the site. Variations in conditions often occur between investigatory locations, and there may be special conditions pertaining to the site which have not been revealed by the investigation and which have not therefore been taken into account. Accordingly, additional studies and actions may be required by the client,

We collected our data and based our report on information which was collected at a specific point in time. The passage of time affects the information and assessment provided by Southern Geophysical Ltd. It is understood that the services provided allowed Southern Geophysical Ltd to form no more than an opinion of the actual conditions of the site at the time the site was visited and cannot be used to assess the effect of any subsequent changes for whatever reason. Where data is supplied by the client or other sources, including where previous site investigation data have been used, it has been assumed that the information is correct. No responsibility is accepted by Southern Geophysical Ltd for incomplete or inaccurate data supplied by others. This document is provided for sole use by the client and is confidential to that client and its professional advisers. No responsibility whatsoever for the contents of this document will be accepted to any person other than the client. Any use which a third party makes of this document, or anyreliance on or decisions to be made based on it, is the responsibility of such third parties. Southern Geophysical Ltd accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this document.

155930015593501559400155945015595001559550155960015596501559700155975015598001559850155990015599501560000156005015601001560150156020015602501560300156035015604001560450

[^1]
5168250
5168200
5168150
5168100


| 8 |
| :--- |
| 0 |
| io |
| $i$ |

5167950
(u) ONIHIYON
5167900
5167850
5167800
5167750
5167700
5167650
5167600 EASTING (m)


要
$m$
$m$









2018 CPT Logs

# CONE PENETRATION TEST (CPT) REPORT 

## Client: Aurecon NZ Ltd

Location: Rosemerryn<br>Ellesmere Road, Lincoln

Printed: 22/05/2018
















## Sounding:

Operator: R. Wyllie
Cone Reference: 170302
Cone Area Ratio: 0.75
Cone Type: I-CFXYP20-15
Tip Resistance (MPa) Initial: 1.3707
Local Friction (MPa) Initial: -0.0114
Pore Pressure (kPa) Initial: 0.0029

## CPTu202

202
Operator: R. Wyllie
Cone Reference: 151125
Cone Area Ratio: 0.75
Cone Type: I-CFXYP20-10
Tip Resistance (MPa) Initial: 1.985
Local Friction (MPa) Initial: 0.0236
Pore Pressure (kPa) Initial: 0.0039

## CPTu203

203
Operator: R. Wyllie
Cone Reference: 151125
Cone Area Ratio: 0.75
Cone Type: I-CFXYP20-10

Tip Resistance (MPa) Initial: 1.9945 Local Friction (MPa) Initial: 0.0235 Pore Pressure (kPa) Initial: 0.0075

## CPTu204

204
Operator: R. Wyllie
Cone Reference: 170302
Cone Area Ratio: 0.75
Cone Type: I-CFXYP20-15
Tip Resistance (MPa) Initial: 1.3563 Local Friction (MPa) Initial: -0.0114 Pore Pressure (kPa) Initial: 0.0072

CPTu205
205
Operator: R. Wyllie
Cone Reference: 160925
Cone Area Ratio: 0.75
Cone Type: I-CFXYP20-15
Tip Resistance (MPa) Initial: -1.4917 Local Friction (MPa) Initial: 0.0198 Pore Pressure (kPa) Initial: 0.0085

Date: 22/05/2018
Predrill: 0.00
Water Level: 1.70
Collapse: 2.30

Final: 1.38
Final: -0.0128
Final: -0.0051

Date: 22/05/2018
Predrill: 0.00
Water Level: 1.60
Collapse: 1.70

Final: 2.1001
Final: 0.02
Final: -0.0043

Date: 22/05/2018
Predrill: 0.00
Water Level: 1.50
Collapse: 1.70

Final: 2.0254
Final: 0.0197
Final: 0.0015

Date: 22/05/2018
Predrill: 0.00
Water Level: 1.40
Collapse: 2.40

Final: 1.3881
Final: -0.0132
Final: -0.0017

Date: 22/05/2018
Predrill: 0.00
Water Level: 1.80
Collapse: 4.00

Final: -1.3956
Final: 0.011
Final: 0.003

Target Depth:

Target Depth:

Target Depth:
Effective Refusal
Tip:
Gauge: Inclinometer: Other:

Target Depth:

## Effective Refusal

Tip: $\checkmark$
Gauge:
Inclinometer: Other:

## Effective Refusal

Tip: $\checkmark$
Gauge:
Inclinometer:
Other:

Effective Refusal
Tip: $\sqrt{ }$
Gauge:
Inclinometer:
Other:

## Effective Refusal

Tip:
Gauge: Inclinometer: $\sqrt{ }$ Other:

Target Depth:

PointID:
Sounding:
206

Cone Reference: 160925
Cone Area Ratio: 0.75
Cone Type: I-CFXYP20-15
Tip Resistance (MPa) Initial: - 1.4662 Local Friction (MPa) Initial: 0.0218 Pore Pressure (kPa) Initial: 0.0072

PointID:
CPTu207
Sounding:

PointID:
Sounding:

PointID:
Sounding:

Sounding:

CPTu208
208
Operator: R. Wyllie
Cone Reference: 160925
Cone Area Ratio: 0.75
Cone Type: I-CFXYP20-15

Tip Resistance (MPa) Initial: -1.5601 Local Friction (MPa) Initial: 0.0173 Pore Pressure ( kPa ) Initial: 0.0052

CPTu209
209
Operator: R. Wyllie
Cone Reference: 151125
Cone Area Ratio: 0.75
Cone Type: I-CFXYP20-10

Tip Resistance (MPa) Initial: 1.9897 Local Friction (MPa) Initial: 0.0224 Pore Pressure (kPa) Initial: 0.0041

## CPTu210

210
Operator: R. Wyllie
Cone Reference: 170302
Cone Area Ratio: 0.75
Cone Type: I-CFXYP20-15

Tip Resistance (MPa) Initial: 1.3671 Local Friction (MPa) Initial: -0.0117 Pore Pressure (kPa) Initial: 0.0214

Date: 22/05/2018
Predrill: 0.00
Water Level: 1.40
Collapse: 1.60

Final: -1.4953
Final: 0.0114
Final: -0.0002

Date: 22/05/2018
Predrill: 0.00
Water Level: 1.80
Collapse: 3.40

Final: 1.3779
Final: -0.0123
Final: -0.0058

Date: 22/05/2018
Predrill: 0.00
Water Level: 1.20
Collapse: 1.50

Final: -1.4439
Final: 0.0116
Final: 0.0036

Date: 22/05/2018
Predrill: 0.00
Water Level: 1.50
Collapse: 2.70

Final: 1.9199
Final: 0.02
Final: 0.0025

Date: 22/05/2018
Predrill: 0.00
Water Level: 1.10
Collapse: 2.40

Final: 1.4049
Final: -0.0165
Final: 0.0195

Target Depth:

Effective Refusal Tip:
Gauge:
Inclinometer: Other:

Target Depth:

Target Depth:

Target Depth:
Effective Refusal
Tip:
Gauge:
Inclinometer:
Other:

Effective Refusal
Tip: $\sqrt{ }$
Gauge:
Inclinometer:
Other:

Effective Refusal
Tip:
Gauge:
Inclinometer:
Other:

Effective Refusal
Tip: $\downarrow$
Gauge:
Inclinometer:
Other:

Target Depth:

Sounding:
Operator: R. Wyllie
Cone Reference: 170302
Cone Area Ratio: 0.75
Cone Type: I-CFXYP20-15
Tip Resistance (MPa) Initial: 1.3397
Local Friction (MPa) Initial: -0.0133
Pore Pressure (kPa) Initial: 0.0163
PointID: CPTu212
Sounding:

PointID: CPTu213
Sounding:

PointID:
Sounding:

Generated with Core-GS by Geroc

PointID: CPTu215
Sounding: 215
Operator: R. Wyllie
Cone Reference: 160925
Cone Area Ratio: 0.75
Cone Type: I-CFXYP20-15

Tip Resistance (MPa) Initial: 1.3107 Local Friction (MPa) Initial: 0.0272 Pore Pressure (kPa) Initial: 0.0111

Date: 18/05/2018
Predrill: 0.00
Water Level: 0.70
Collapse: 0.80

Final: 1.4119
Final: -0.0148
Final: 0.0127

Date: 18/05/2018
Predrill: 0.00
Water Level: 1,60
Collapse: 2.20

Final: 1.814
Final: 0.021
Final: 0.005

Date: 18/05/2018
Predrill: 0.00
Water Level: 1.60
Collapse: 2.80

Final: 1.9701
Final: 0.0193
Final: 0.0008
Target Depth:

Date: 18/05/2018
Predrill: 0.00
Water Level: 1.50
Collapse: 2.60

Final: 2.0591
Final: 0.0194
Final: 0.0033
Target Depth:

Date: 18/05/2018
Predrill: 0.00
Water Level: 1.70
Collapse: 3.30

Final: 2.0432
Final: 0.02
Final: 0.003
Target Depth:

## CPT CALIBRATION AND TECHNICAL NOTES

These notes describe the technical specifications and associated calibration references pertaining to the following cone types:

- I-CFXY-10 measuring cone resistance, sleeve friction and inclination (standard cone, $10 \mathrm{~cm}^{2}$ );
- I-CFXY-15 measuring cone resistance, sleeve friction and inclination (standard cone, $15 \mathrm{~cm}^{2}$ );
- I-CFXYP20-10 measuring cone resistance, sleeve friction, inclination and pore pressure (piezocone, $10 \mathrm{~cm}^{2}$ );
- I-CFXYP20-15 measuring cone resistance, sleeve friction, inclination and pore pressure (piezocone, $15 \mathrm{~cm}^{2}$ );
- I-C5F0p15XYP20-10 measuring sensitive cone resistance, sleeve friction, inclination and pore pressure (piezocone, 10 $\mathrm{cm}^{2}$ ).


## Dimensions

Dimensional specifications for all cone types are detailed below. All tolerances are routinely checked prior to testing and measurements taken are manually recorded on CPT field sheets. All field sheets are kept on file and available on request.


## CPT CALIBRATION AND TECHNICAL NOTES (cont.)

## Calibration

Each cone has a unique identification number that is electronically recorded and reported for each CPT test. The identification number enables the operator to compare 'zero-load offsets' to manufacturer calibrated zero-load offsets.

The recommended maximum zero-load offset for each sensor is determined as $\pm 5 \%$ of the nominal measuring range.

In addition to maximum zero-load offsets, McMillan Drilling also limits the difference in zero load offset before and after the test as $\pm 2 \%$ of the maximum measuring range. See table below:

|  | Tip (MPa) | Friction (MPa) | Pore Pressure (MPa) |
| :--- | :---: | :---: | :---: |
| Maximum Measuring Range: | 150 | 1.50 | 3.00 |
| Nominal Measuring Range: | 75 | 1.00 | 2.00 |
| Max. 'zero-load offset': | 7.5 | 0.10 | 0.20 |
| Max 'before and after test': | 3 | 0.03 | 0.06 |

Note: The zero offsets are electronically recorded and reported for each test in the same units as that of each sensor.

| TEST CERTIFICATE Icone (all versions) |  |  |  |
| :---: | :---: | :---: | :---: |
| Supplier: | A.P. v.d. Berg Machinefabriek, Heerenveen The Netherlands |  |  |
| Production-order: | 73444 |  |  |
| Client: | Mcmillan |  |  |
| Cone-type: | I-CFXYP20-10 |  |  |
| Cone-number: | 151125 |  |  |
| To test / To check item |  | Required value | Checked value |
| Check Quad-ring groove behind friction sleeve with check ring; Sample testing; 1 of every 5 Icones is tested. |  | Sleeve fixed | O/4 |
| Isolation-resistance. |  | $>0.5 \mathrm{G} \Omega$ | $1 \mathrm{G} \Omega$ |
| Stralghtness: Icone 5,10 and $15 \mathrm{~cm}^{2} \mathrm{~S}<2.2$. mm. At Icone base: $5<0,2 \mathrm{~mm}$ |  | $\mathrm{S}<=2,2 \mathrm{~mm}$ | 1.1 mm |
| "Classic calibration" NOT present! <br> Check of callbration-file: "Classic calibration" removed. |  | O.K. | - |
| Check alarm-settings Icone. Alarm values are set. (Kill Shutdown). |  | O.K. | CK |
| Software version - check at opening screen. |  | version: | 人.0? |
| Calibration date of Icone; check cone data [F1]..[F1], |  | O.K. | OK |
| Initial zero-Value Tip after calibration - within 1.0 \% of nominal load. |  | Value: | -geeg MPa |
| Initial zero-Value Local Friction after calibration - withln $1.0 \%$ of nominal load. |  | Value: | Cocil MPa |
| Initial zero-Value Pore Pressure after calibration - within $1.0 \%$ of nominal load. |  | Value: | 0.8 kPa |
| Initial zero-Value Inclination $X$. $-1^{\circ}<X<+1^{\circ}$ <br> InItial zero-Value Inclination $Y$. $-1^{\circ}<Y<+1^{\circ}$ |  | Value: Value: | $\begin{array}{cc} 93 & 0 \\ -0.1 & 0 \end{array}$ |
| Measurements Tlp resistance OK? |  | Tested range | c-75 Mp? |
| Influence Tip load on Local Friction and Pore Pressure: Max. tip load: $5 \mathrm{~cm}^{2}$ : $65 \mathrm{MPa} ; 10 \mathrm{~cm}^{2}$; $100 \mathrm{MPa} ; 15 \mathrm{~cm}^{2}: 75 \mathrm{MPa}$. |  | $\begin{aligned} & \mathrm{LF}<10 \mathrm{kPa} \\ & \mathrm{PP}<1 / 2 \% \text { nom } \end{aligned}$ | $\begin{aligned} & 4 k p^{\circ} \\ & 0,2 \mathrm{kPO} \end{aligned}$ |
| Measurements local friction OK? |  | Tested range: | C-1 MAP |
| Local friction at max. load. |  | Tested value: | 1,5 Mpa |
| Measurements Pore Pressure OK? |  | Tested range: | 1-30¢hor |
| Measure Pore Pressure to $150 \%$. |  | Tested value: | Saeefori |
| Measurements Inclination OK? |  | Tested range: | $24-0-24$ |
| Cone recognition on disconnecting and connecting Icone again? |  | Yes | C-f |
| Remarks: |  |  |  |



R:YERD\Beproevingsprotocolien\Beproevingsprotocol Icane Englist version Mc Millan.doc.docx

| TEST CERTIFICATE Icone (all versions) |  |  |  |
| :---: | :---: | :---: | :---: |
| Supplier: | A.P. v.d. Berg Machinefabriek, Heerenveen The Netherlands |  |  |
| Production-order: | 72614 |  |  |
| Client: | lic linillam |  |  |
| Cone-type: | I-CFXYP20.15 |  |  |
| Cone-number: | $160925$ |  |  |
| To test / To check Item |  | Required value | Checked value |
| Check Quad-ring groove behind friction sleeve with check ring; Sample testing: 1 of every 5 Icones is tested. |  | Sleeve fixed |  |
| Isolation-resistance. |  | $>0.5 \mathrm{G} \Omega$ | 1.1 G ( |
| Straightness: Icone 5, 10 and $15 \mathrm{~cm}^{2} \mathrm{~S}<2.2 \mathrm{~mm}$. At Icone base: $\mathrm{S}<0,2 \mathrm{~mm}$ |  | $\mathrm{S}<=2,2 \mathrm{~mm}$ | l. 4 mm |
| "Classic calibration" NOT present! Check of calibration-file: "Classic calibration" removed. |  | O.K |  |
| Check alarm-settings Icone. Alarm values are set. (KIll Shutdown). |  | O.K. | O.K. |
| Software version - check at opening screen. |  | version: | 2.0 |
| Calibration date of Icone; check cone data [F1]..[F1]. |  | O.K. | $01<$. |
| Initial zero-Value Tip after calibration - within $1.0 \%$ of nominal load. |  | Value: | $-0.163 \mathrm{MPa}$ |
| Inital zero-Value Local Friction after calibration - within $1.0 \%$ of nominal load. |  | Value: | $0,0001 \mathrm{MPa}$ |
| Initial zero-Value Pore Pressure after calibration - within $1.0 \%$ of nominal load. |  | Value: | $-1.4 \mathrm{kPa}$ |
| Initial zero-Value Indination $X$. $-1^{\circ}<X<+1^{\circ}$ <br> Initial zero-Value Inclination $Y$. $-1^{\circ}<Y<+1^{\circ}$ |  | Value: Value: | $\begin{array}{r} -0 \\ 0 \end{array} \mathbf{3}_{0}^{0}$ |
| Measurements Tip resistance OK? |  | Tested range | 0-75 MPa |
| Influence Tip load on Local Friction and Pore Pressure: Max. tip load: $5 \mathrm{~cm}^{2}$ : $65 \mathrm{MPa} ; 10 \mathrm{~cm}^{2}$ : $100 \mathrm{MPa} ; 15 \mathrm{~cm}^{2}: 75 \mathrm{MPa}$. |  | $\begin{gathered} \mathrm{F}<10 \mathrm{kPa} \\ \mathrm{PP}<1 / 2 \% \text { nom } \end{gathered}$ | $\begin{aligned} & 4 \mathrm{kPa} \\ & 0 \\ & 0 \end{aligned}$ |
| Measurements local friction OK? |  | Tested range: | 0.1 MPa |
| Local friction at max. load. |  | Tested value: | 1.5 MPa |
| Measurements Pore Pressure OK? |  | Tested range: | ¿- Secolipa |
| Measure Pore Pressure to $150 \%$. |  | Tested value: | 3000 i $2 P_{a}$ |
| Measurements Indination OK? |  | Tested range: | 24-0-+24 |
| Cone recognition on disconnecting and connecting Icone again? |  | Yes | Yes |
| Remarks: |  |  |  |


| Callbrated by: IV de Jong | Date: 28-09.16 | Sign.: if |
| :---: | :---: | :---: |
| Final check: J.W' waor der'Mec: | Date: $2 \delta-09=16$ | Sign: $5 \geq 50$ |




F

## 2018 Borehole Logs




## Bore Log

| MCMILLANDrilling | Client: | Aurecon NZ Ltd | Bore No.: |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Project: |  | BH202 |  |
|  |  |  | Job No.: |  |
|  |  | Rosemerryn |  | 17414 |

Site Location: Ellesmere Road, Lincoln
Grid Reference: 1560239.44 mE 5167880.67 mN NZTM
Rig Operator: C. Nee
Rig Model \& Mounting: AMS VTR9570 - track

| Description |  |  | $\begin{aligned} & \text { lion } \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$ <br> 누운 | $\begin{aligned} & \stackrel{5}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$ |  |  |  |  |  | Installati \& Resourc $\Pi$ | ion ces <br> 0.70 m slick up |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No sample recovery. |  |  |  |  |  |  |  |  |  |  |  |


| Remarks <br> Geotechnical investigation borehole <br> Static water levels: |  | Additional Resources: |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Plastic Liner / PVC Splits Core boxes |  |  |
|  |  |  |  |  |
| Static water levels: <br> 1.45 mbgl at casing depth of $3.00 \mathrm{~m} ; 18 / 5 / 2018,4.47 \mathrm{pm}$ |  | - Standard <br> - Environmental |  |  |
| No liters water added |  | Above Ground Proleclive Surround Geotextile Sock Hand Clear Location Decontaminate Equipment |  | 1.0 $\checkmark$ |
|  |  | Drivability <br> 1 Easy Push - No Harmmer I Fast Penetralion <br> 2 Relatively Easy Push - Light Rammer \Relatively Fast <br> 3 Medium Push - Consistent Hammer \Medium <br> 4 Hard Push - Full Hammer \Somewhat Slow <br> 5 Very Hard Push - Full Hammer I Very Slow |  |  |
|  |  |  |  |  |
| 120 High Street, Southbridge 7602, Canterbury, New Zealand | ph: (03) 3242571 fax: (03) 3242431 | web: www.drilling.co.nz | Hole Depth: 3.2m |  |
|  |  |  | Page 1 of 1 |  |






|  | BOREHOLE RECORD | ) HOLE NO. | BH205 |
| :---: | :---: | :---: | :---: |
| www.aurecongroup.com |  | PROJECT NO. | 224464 |
| $\begin{array}{ll} \text { PROJECT } & \begin{array}{l} \text { Rosemerryn Subdivision } \\ \text { Lincoln } \end{array} \end{array}$ |  |  |  |
| METHOD Borehole | CO-ORDINATES (NZTM) <br> E 1559804 <br> N 5167802 | SHEET 1 | of 1 |
| MACHINE \& NO. AMS VTR9570-track |  | DATE from 18/05/2018 | to $18 / 05 / 2018$ |
| FLUSHING MEDIUM Water | ORIENTATION VERTICAL | GROUND-LEVEL | m RL |



2018 MASW Report

## MASW Investigation:

## Rosemerryn Stages 19 to 24, Lincoln

Report prepared for Aurecon


Southern
Geophysical Ltd
3/28 Tanya St, Bromley, Christchurch 8062
Ph: 033844302
Web: www.southerngeophysical.com

Data collected and report prepared for Southern Geophysical by:
Christian Rüegg (MSc), Geophysicist
Mike Finnemore (PhD), Geophysicist
Nick McConachie (BSc), Geologist
Rebecca Gilbert (PgDip), Geologist

## Table of Contents

Summary: ..... 2
Methodology: ..... 2
Results: ..... 3
Disclaimer: ..... 4

## Summary:

A series of Multi-channel Analysis of Surface Waves (MASW) surveys were undertaken at stages 19 to 24 of the Rosemerryn subdivision, Lincoln on May 24, 2018. The geophysical testing included five MASW lines, orientated South to North across a series of farm paddocks. The profiles show a low velocity unit in the top 5 m of the sections, with a marked increase to $250 \mathrm{~m} / \mathrm{s}$ between 4 m and 6 m depth. Velocities increase with depth to over $500 \mathrm{~m} / \mathrm{s}$ at around 15 m to 20 m depth.

## Methodology:

MASW is a geophysical technique that uses the dispersive nature of surface waves to model shear-wave velocity versus depth.

A MASW survey is undertaken as a series of lines or points across the surface of the site. The MASW lines in this survey were collected using a 24 -channel towed seismic array, with 4.5 Hz geophones. The geophone spacing was 1 m and the source offset was 10 m . The active source was a 12 lb sledgehammer impacting an aluminium plate. Recording parameters for the MASW survey were set with a 0.125 ms sample interval, 1 s record length, 24 dB gains, and an electric trigger system. Shot records were collected at 5 m spacing along the line where possible.

The field records were processed using the Kansas Geological Survey software package SurfSeis5 ©. The geometry was set according to the survey parameters and the dispersion curves were generated and edited. The inversions were run using a 10 layer variable depth model.

The velocity data was interpolated into 2D $\mathrm{V}_{\mathrm{s}}$ profiles for the MASW lines. The output shear-wave velocity data is included as a series of data files (CSV format), supplementary to this report.

The midpoint of the MASW seismic array at each shot record was recorded with a Trimble GeoXH GPS system. The GPS points were differentially corrected and output using the New Zealand Geodetic Datum (NZGD) 2000, with Mt Pleasant

2000 coordinates. The site did not have significant elevation changes, and the profiles have not been corrected for topography.

## Results:

Five MASW lines with a total length of 1125 meters were surveyed at the site (Figure 1). The site had moderate levels of ambient noise due to traffic on nearby roads. The MASW profiles did not show any major velocity inversions, with shearwave velocities gradually increasing from less than $100 \mathrm{~m} / \mathrm{s}$ to over $500 \mathrm{~m} / \mathrm{s}$ at between 15 m and 20 m depth (Figures 2 to 4). The velocities in the upper 5 m are low, which is consistent with previous MASW surveys conducted at the subdivision. It is recommended that the MASW profiles be correlated with any intrusive investigations to add geological context to the shear-wave velocities.

## Disclaimer:

This document has been provided by Southern Geophysical Ltd subject to the following:

Non-invasive geophysical testing has limitations and is not a complete source of testing. Often there is a need to couple non-invasive methods with invasive testing methods, such as drilling, especially in cases where the non-invasive testing indicates anomalies.

This document has been prepared for the particular purpose outlined in the project proposal and no responsibility is accepted for the use of this document, in whole or in part, in other contexts or for any other purpose. Southern Geophysical Ltd did not perform a complete assessment of all possible conditions or circumstances that may exist at the site. Conditions may exist which were undetectable given the limited nature of the enquiry Southern Geophysical Ltd was retained to undertake with respect to the site. Variations in conditions often occur between investigatory locations, and there may be special conditions pertaining to the site which have not been revealed by the investigation and which have not therefore been taken into account. Accordingly, additional studies and actions may be required by the client.

We collected our data and based our report on information which was collected at a specific point in time. The passage of time affects the information and assessment provided by Southern Geophysical Ltd. It is understood that the services provided allowed Southern Geophysical Ltd to form no more than an opinion of the actual conditions of the site at the time the site was visited and cannot be used to assess the effect of any subsequent changes for whatever reason. Where data is supplied by the client or other sources, including where previous site investigation data have been used, it has been assumed that the information is correct. No responsibility is accepted by Southern Geophysical Ltd for incomplete or inaccurate data supplied by others. This document is provided for sole use by the client and is confidential to that client and its professional advisers. No responsibility whatsoever for the contents of this document will be accepted to any person other than the client. Any use which a third party makes of this document, or any reliance on or decisions to be made based on it, is the responsibility of such third parties. Southern Geophysical Ltd accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this document.


Figure 1: MASW Survey Locations

NOTES- Aerial photograph sourced from LINZ, Crown Copyright © MASW
Line labels show the chainage along the MASW Lines.

## Southern <br> Geophysical Ltd

www.southemgeophysical.com






## -

## Liquefaction Results

Date：
Dob Number：
By：
By：
$\begin{array}{ll}\text { Client } & \text { Fullon Hogan Landivsior } \\ \text { Project：} & \text { Rosemerryn Subdive } \\ \text { Subject：} & \text { Stages } 19 \text { to } 24 \text { Liquefaction Analys is }\end{array}$
Likute Iaction Resullts－CPTs relevvant to Stages 191024

|  |  | $-2$ | $98$ |  |  |  | $\%$ | $2$ |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 꾸흐․ |  |  |  |  |  |  | $m$ |  |  |  |  |  | $-\cdots$ |  |  |  |  |  |  |  |
| E |  |  |  |  |  |  | － | \％ |  |  |  |  | $\mid$ |  |  | 28 |  |  |  | 产 ${ }^{3}$ |
| 등 |  |  |  | $\mid$ |  |  |  |  |  |  |  |  | 和圆 |  |  | $\overbrace{}^{\text {a }}$ |  |  |  | $\cdots$ |
| $\stackrel{3}{8}$ | 立 |  |  |  |  |  |  |  | $0$ |  |  |  |  |  |  |  |  |  |  | 兌 |

Assessment
aurecon


## aurecon



## Document prepared by

Aurecon New Zealand Limited
Level 2, Iwikau Building
93 Cambridge Terrace
Christchurch 8013

## New Zealand

T +64 33660821
F +64 33796955
E christchurch@aurecongroup.com
Waurecongroup.com

## áurecon



Aurecon offices are located in:
Angola, Australia. Botswana, China,
Ghana, Hong Kong, Indonesia, Kenya,
Lesotho Mozambique.
Namibia, New Zealand, Nigeria,
Philippines, Qatar, Singapore, South Africa,
Swaziland, Tanzania, Thailand, Uganda,
United Arab Emirates. Vietnam, Zambia,


[^0]:    categories are based the
    liquefaction assessment
    calibrated with site performance.
    Note: Equivalent technical

[^1]:    NOTES- Coordinates NZ2000 TM Grid. LINZ
    Aerial photograph post February 2011, sourced from LINZ
    MASW
    points are the midpoint of a 23 m 24 channel MASW

    NOTES-

    | TITLE- | Figure 1: MASW Location Plan |
    | :--- | :--- |
    | LOCATION- Rosemerryn Farm, Lincoln |  |

    ores
    title- Figure 1: MASW Location Plan
    Rosemerryn Farm, Lincoln
    LOCATION-

